Home
Class 14
MATHS
The value of: [(5/7 " of " 1 (3)/(8) " o...

The value of: `[(5/7 " of " 1 (3)/(8) " of " 6/7)] div [1-(1)/(7) xx ( 5/12 +(1)/(3)) ] xx ((1)/(7) -(1)/(9))/((1)/(7) +(1)/(9))`

A

`495/5992`

B

`8`

C

`4`

D

`(33)/(280)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given expression step by step, we will follow the order of operations (BODMAS/BIDMAS rules) which stands for Brackets, Orders (i.e., powers and square roots, etc.), Division and Multiplication (from left to right), Addition and Subtraction (from left to right). ### Step 1: Simplify the first bracket The first part of the expression is: \[ \left(\frac{5}{7} \text{ of } 1 \frac{3}{8} \text{ of } \frac{6}{7}\right) \] First, convert \(1 \frac{3}{8}\) into an improper fraction: \[ 1 \frac{3}{8} = \frac{8 + 3}{8} = \frac{11}{8} \] Now, replace "of" with multiplication: \[ \frac{5}{7} \times \frac{11}{8} \times \frac{6}{7} \] ### Step 2: Calculate the multiplication Now, multiply the fractions: \[ \frac{5 \times 11 \times 6}{7 \times 8 \times 7} = \frac{330}{392} \] ### Step 3: Simplify the fraction Next, simplify \(\frac{330}{392}\): The GCD of 330 and 392 is 2. \[ \frac{330 \div 2}{392 \div 2} = \frac{165}{196} \] ### Step 4: Simplify the second bracket Now, simplify the second part of the expression: \[ 1 - \left(\frac{1}{7} \times \left(\frac{5}{12} + \frac{1}{3}\right)\right) \] First, calculate \(\frac{5}{12} + \frac{1}{3}\): Convert \(\frac{1}{3}\) to have a common denominator of 12: \[ \frac{1}{3} = \frac{4}{12} \] So, \[ \frac{5}{12} + \frac{4}{12} = \frac{9}{12} = \frac{3}{4} \] Now, substitute back: \[ 1 - \left(\frac{1}{7} \times \frac{3}{4}\right) = 1 - \frac{3}{28} \] Convert 1 to a fraction with a denominator of 28: \[ 1 = \frac{28}{28} \] So, \[ \frac{28}{28} - \frac{3}{28} = \frac{25}{28} \] ### Step 5: Calculate the last part Now, calculate: \[ \frac{\frac{1}{7} - \frac{1}{9}}{\frac{1}{7} + \frac{1}{9}} \] Find a common denominator for both the numerator and denominator: For the numerator: \[ \frac{1}{7} - \frac{1}{9} = \frac{9 - 7}{63} = \frac{2}{63} \] For the denominator: \[ \frac{1}{7} + \frac{1}{9} = \frac{9 + 7}{63} = \frac{16}{63} \] So, we have: \[ \frac{\frac{2}{63}}{\frac{16}{63}} = \frac{2}{16} = \frac{1}{8} \] ### Step 6: Combine everything Now, we can combine everything: \[ \frac{165}{196} \div \left(\frac{25}{28} \times \frac{1}{8}\right) \] Calculate the multiplication in the denominator: \[ \frac{25}{28} \times \frac{1}{8} = \frac{25}{224} \] Now, perform the division: \[ \frac{165}{196} \div \frac{25}{224} = \frac{165}{196} \times \frac{224}{25} \] This simplifies to: \[ \frac{165 \times 224}{196 \times 25} \] ### Step 7: Simplify the final fraction Now, we can simplify: 1. \(165 = 5 \times 33\) 2. \(196 = 7 \times 28\) 3. \(224 = 7 \times 32\) 4. \(25 = 5 \times 5\) Thus, we can cancel the common factors: \[ \frac{33 \times 32}{28 \times 5} = \frac{1056}{140} \] Now, simplify \(\frac{1056}{140}\): The GCD is 28: \[ \frac{1056 \div 28}{140 \div 28} = \frac{38}{5} \] ### Final Answer The value of the expression is: \[ \frac{38}{5} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(4)/(7) " of " (8)/(9) div (8)/(7) xx 180 " of " (1)/(9)= ?

The value of (3)/(5) xx 1 (7)/(8) div 1 (1)/(3) of (3)/( 16) - ( 3 (1)/(5) div 4 (1)/(2)" of" 5 (1)/(3) ) xx 2 (1)/(2) + (1)/(2) + (1)/(8) div (1)/(4)

(5)/(6) -: (6)/(7) xx ? - (8)/(9) -: 1 (2)/(5) -: (3)/(4) xx 3 (1)/(3) = 2(7)/(9)

(1)/(5)xx(5)/(7)div (6)/(7)=?

The value of 3(1)/(3) div 2(1)/(2) of 1(3)/(5) + ((3)/(8) + (1)/(7) xx 1 (3)/(4)) is

The value of: 3/8 "of " 4/5 div 1 (1)/(5) + (3)/(7) " of" (7)/(12) div (1)/(40) "of" (2)/(5) - 3(2)/(3) div (11)/(30) "of" (2)/(3)

The value of ((7)/(8) div 5(1)/(4) xx 7(1)/(5) - (3)/(20) " of " (2)/(3)) div (1)/(2) + ((3)/(5) xx 7(1)/(2) + (2)/(3) div (8)/(15)) is equal to 7+k , where k =

The value of (5 (1)/(9) - 7 (7)/(8)div9 (9)/(20)) xx (9)/(11)- (5(1)/(4) div (3)/(7) " of " (1)/(4) xx (2)/(7)) div 4 (2)/(3) + 1 (3)/(4) is (a) 2(1)/(4) (b) 2(1)/(3) (c) 3(1)/(4) (d) 4(1)/(2)

The value of (2)/(5) div (3)/(10) of (4)/(9) - (4)/(5) xx 1 (1)/(9) div (8)/(15) - (3)/(4) + (3)/(4) div (1)/(2) is: (a)7/9 (b)23/6 (c)4/3 (d)25/12

(1)/(5) xx [(2)/(7) +(3)/(8)] =[(1)/(5) xx (2)/(7)] + ________.