Home
Class 14
MATHS
The value of 5 (5)/(6) div 3(1)/(2) xx 2...

The value of `5 (5)/(6) div 3(1)/(2) xx 2 (1)/(10) + (3)/(5) ` of ` 7(1)/(2) div (2)/(3) - (2)/(3) div (8)/(15) xx 1 (1)/(5)`

A

`8 (3)/(4)`

B

`2 (3)/(5)`

C

`8(3)/(5 )`

D

`1(3)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression given in the question, we will follow these steps: ### Step 1: Convert Mixed Numbers to Improper Fractions The expression is: \[ 5 \frac{5}{6} \div 3 \frac{1}{2} \times 2 \frac{1}{10} + \frac{3}{5} \] and \[ 7 \frac{1}{2} \div \frac{2}{3} - \frac{2}{3} \div \frac{8}{15} \times 1 \frac{1}{5} \] First, we convert the mixed numbers to improper fractions: - \( 5 \frac{5}{6} = \frac{35}{6} \) - \( 3 \frac{1}{2} = \frac{7}{2} \) - \( 2 \frac{1}{10} = \frac{21}{10} \) - \( 7 \frac{1}{2} = \frac{15}{2} \) - \( 1 \frac{1}{5} = \frac{6}{5} \) Now, the expression becomes: \[ \frac{35}{6} \div \frac{7}{2} \times \frac{21}{10} + \frac{3}{5} \] and \[ \frac{15}{2} \div \frac{2}{3} - \frac{2}{3} \div \frac{8}{15} \times \frac{6}{5} \] ### Step 2: Solve the First Part Now, we will solve the first part: \[ \frac{35}{6} \div \frac{7}{2} \times \frac{21}{10} + \frac{3}{5} \] 1. **Division of Fractions**: \[ \frac{35}{6} \div \frac{7}{2} = \frac{35}{6} \times \frac{2}{7} = \frac{35 \times 2}{6 \times 7} = \frac{70}{42} = \frac{5}{3} \] 2. **Multiplication**: \[ \frac{5}{3} \times \frac{21}{10} = \frac{5 \times 21}{3 \times 10} = \frac{105}{30} = \frac{7}{2} \] 3. **Adding the Second Fraction**: \[ \frac{7}{2} + \frac{3}{5} \] To add these fractions, we need a common denominator. The LCM of 2 and 5 is 10: \[ \frac{7}{2} = \frac{35}{10}, \quad \frac{3}{5} = \frac{6}{10} \] Thus, \[ \frac{35}{10} + \frac{6}{10} = \frac{41}{10} \] ### Step 3: Solve the Second Part Now, we will solve the second part: \[ \frac{15}{2} \div \frac{2}{3} - \frac{2}{3} \div \frac{8}{15} \times \frac{6}{5} \] 1. **Division of Fractions**: \[ \frac{15}{2} \div \frac{2}{3} = \frac{15}{2} \times \frac{3}{2} = \frac{45}{4} \] 2. **Second Division**: \[ \frac{2}{3} \div \frac{8}{15} = \frac{2}{3} \times \frac{15}{8} = \frac{30}{24} = \frac{5}{4} \] 3. **Multiplication**: \[ \frac{5}{4} \times \frac{6}{5} = \frac{6}{4} = \frac{3}{2} \] 4. **Subtraction**: \[ \frac{45}{4} - \frac{3}{2} \] Convert \( \frac{3}{2} \) to have a common denominator of 4: \[ \frac{3}{2} = \frac{6}{4} \] Thus, \[ \frac{45}{4} - \frac{6}{4} = \frac{39}{4} \] ### Step 4: Combine Both Parts Now we combine the results from both parts: \[ \frac{41}{10} \text{ and } \frac{39}{4} \] To add these, we need a common denominator. The LCM of 10 and 4 is 20: \[ \frac{41}{10} = \frac{82}{20}, \quad \frac{39}{4} = \frac{195}{20} \] Thus, \[ \frac{82}{20} + \frac{195}{20} = \frac{277}{20} \] ### Final Answer The final answer is: \[ \frac{277}{20} = 13 \frac{17}{20} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of ((7)/(8) div 5(1)/(4) xx 7(1)/(5) - (3)/(20) " of " (2)/(3)) div (1)/(2) + ((3)/(5) xx 7(1)/(2) + (2)/(3) div (8)/(15)) is equal to 7+k , where k =

The value of (1)/(3) div (5)/(6) xx (-5)/(3) is equal to :

The value of 3(1)/(3) div 2(1)/(2) of 1(3)/(5) + ((3)/(8) + (1)/(7) xx 1 (3)/(4)) is

The value of (2)/(5) div (3)/(10) of (4)/(9) - (4)/(5) xx 1 (1)/(9) div (8)/(15) - (3)/(4) + (3)/(4) div (1)/(2) is: (a)7/9 (b)23/6 (c)4/3 (d)25/12

The value of (3)/(5) xx 1 (7)/(8) div 1 (1)/(3) of (3)/( 16) - ( 3 (1)/(5) div 4 (1)/(2)" of" 5 (1)/(3) ) xx 2 (1)/(2) + (1)/(2) + (1)/(8) div (1)/(4)

The value of: 3/8 "of " 4/5 div 1 (1)/(5) + (3)/(7) " of" (7)/(12) div (1)/(40) "of" (2)/(5) - 3(2)/(3) div (11)/(30) "of" (2)/(3)

The value of 4(2)/(5) div { (1(1)/(2)-3(1)/(5)) 3(2)/(5) +(2(1)/(5) div 1(1)/(2) + 4(2)/(5)) +(1)/(2)} is :

What is the value of (3)/(7) div (9)/(21) +2-(4)/(3)+(1)/(2)" of "(12)/(5) xx (25)/(18) div (5)/(9) ?