Home
Class 14
MATHS
If x^(2) - 3x + 1 = 0 , then the value ...

If `x^(2) - 3x + 1 = 0` , then the value of `x^(3) + (1)/(x^(3))` is equal to

A

87

B

123

C

135

D

201

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(x^2 - 3x + 1 = 0\) and find the value of \(x^3 + \frac{1}{x^3}\), we can follow these steps: ### Step 1: Solve the quadratic equation We start with the equation: \[ x^2 - 3x + 1 = 0 \] We can use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \(a = 1\), \(b = -3\), and \(c = 1\). ### Step 2: Calculate the discriminant Calculate the discriminant: \[ b^2 - 4ac = (-3)^2 - 4 \cdot 1 \cdot 1 = 9 - 4 = 5 \] ### Step 3: Find the roots Now substituting back into the quadratic formula: \[ x = \frac{3 \pm \sqrt{5}}{2} \] ### Step 4: Find \(x + \frac{1}{x}\) To find \(x + \frac{1}{x}\), we can use the identity: \[ x + \frac{1}{x} = \frac{x^2 + 1}{x} \] From our original equation \(x^2 - 3x + 1 = 0\), we can rearrange it to find: \[ x^2 = 3x - 1 \] Substituting this into the identity gives: \[ x + \frac{1}{x} = \frac{(3x - 1) + 1}{x} = \frac{3x}{x} = 3 \] ### Step 5: Cube \(x + \frac{1}{x}\) Now we can find \(x^3 + \frac{1}{x^3}\) using the identity: \[ x^3 + \frac{1}{x^3} = \left(x + \frac{1}{x}\right)^3 - 3\left(x + \frac{1}{x}\right) \] Substituting \(x + \frac{1}{x} = 3\): \[ x^3 + \frac{1}{x^3} = 3^3 - 3 \cdot 3 \] ### Step 6: Calculate the final value Calculating this gives: \[ x^3 + \frac{1}{x^3} = 27 - 9 = 18 \] Thus, the value of \(x^3 + \frac{1}{x^3}\) is: \[ \boxed{18} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x ^(2) - 3 sqrt2 x +1 = 0, then the value of x ^(3) + (1)/(x ^(3)) is :

If x^2 - 3x +1=0, then the value of x +1/x is

If (x+(1)/(x))=3 , then the value of (x^(3)+(1)/(x^(3))) is equal to :

If x(3-2/x)=3/x , then the value of x^3-(1)/(x^3) is equal to: