Home
Class 14
MATHS
The value of cosec^(2) 18^(@) - 1/(cot...

The value of `cosec^(2) 18^(@) - 1/(cot^(2) 72^(@)` is

A

`(1)/(sqrt(3))`

B

`(sqrt(2))/(3)`

C

`(1)/(2)`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \csc^2 18^\circ - \frac{1}{\cot^2 72^\circ} \). ### Step-by-step Solution: 1. **Understanding the Trigonometric Identities**: We know that: \[ \csc^2 \theta = 1 + \cot^2 \theta \] Therefore, we can express \( \csc^2 18^\circ \) as: \[ \csc^2 18^\circ = 1 + \cot^2 18^\circ \] 2. **Rewriting the Expression**: We can rewrite the original expression: \[ \csc^2 18^\circ - \frac{1}{\cot^2 72^\circ} \] Since \( \cot 72^\circ = \tan(90^\circ - 72^\circ) = \tan 18^\circ \), we have: \[ \cot^2 72^\circ = \tan^2 18^\circ \] Thus, we can rewrite \( \frac{1}{\cot^2 72^\circ} \) as: \[ \frac{1}{\cot^2 72^\circ} = \frac{1}{\tan^2 18^\circ} \] 3. **Substituting Back**: Now substituting back into the expression: \[ \csc^2 18^\circ - \frac{1}{\tan^2 18^\circ} = (1 + \cot^2 18^\circ) - \frac{1}{\tan^2 18^\circ} \] 4. **Using the Identity for Cotangent**: We know that: \[ \cot^2 18^\circ = \frac{1}{\tan^2 18^\circ} \] Thus, we can simplify: \[ \csc^2 18^\circ - \frac{1}{\tan^2 18^\circ} = 1 + \cot^2 18^\circ - \tan^2 18^\circ \] 5. **Final Simplification**: Since \( \cot^2 \theta - \tan^2 \theta = 1 \) for any angle \( \theta \): \[ \cot^2 18^\circ - \tan^2 18^\circ = 1 \] Therefore, we have: \[ 1 + 1 = 2 \] 6. **Conclusion**: Thus, the final value of the expression \( \csc^2 18^\circ - \frac{1}{\cot^2 72^\circ} \) is: \[ \boxed{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of sqrt(cosec^(2) 45^(@) - cot^(2) 45^(@))

What is the value of cot^(2) 72^(@)-cosec^(2)72^(2) ?

The numerical value of cot 18^(@) (cot 72^(@) cos^(2) 22^(@) + (1)/(tan 72^(@) sec^(2) 68^(@))) is

The value of tan^(2) (sec ^(-1) 2) + cot^(2) (cosec^(-1) 3) is equal to

The value of cot^(2)36^(@)cot^(2)72^(@) is

The value of sec^(2)(tan^(-1)2)+cosec^(2)(cot^(-1)3) is

The value of ("cosec" theta -cot theta)^(2) is

The value of cot(cosec^(-1)(5)/(3)+tan^(-1)""(2)/(3)) is

The value of tan^(2)∅+ cot^(2)∅− sec^(2)∅ cosec^(2)∅ is equal to: tan^(2)∅+ cot^(2)∅− sec^(2)∅ cosec^(2)∅ iका मान बराबर है :