Home
Class 14
MATHS
If theta = 9^(@), then what is the value...

If `theta = 9^(@),` then what is the value of
`cot theta cot 2 theta cot 3 theta cot 4 theta cot 5 theta cot 6 theta cot 7 theta cot 8 theta cot 9 theta` ?

A

`(1)/(sqrt3)`

B

`sqrt3 -1`

C

1

D

`sqrt3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the product: \[ \cot \theta \cdot \cot 2\theta \cdot \cot 3\theta \cdot \cot 4\theta \cdot \cot 5\theta \cdot \cot 6\theta \cdot \cot 7\theta \cdot \cot 8\theta \cdot \cot 9\theta \] where \(\theta = 9^\circ\). ### Step 1: Identify the angles We can express the angles in terms of \(\theta\): - \(\cot \theta = \cot 9^\circ\) - \(\cot 2\theta = \cot 18^\circ\) - \(\cot 3\theta = \cot 27^\circ\) - \(\cot 4\theta = \cot 36^\circ\) - \(\cot 5\theta = \cot 45^\circ\) - \(\cot 6\theta = \cot 54^\circ\) - \(\cot 7\theta = \cot 63^\circ\) - \(\cot 8\theta = \cot 72^\circ\) - \(\cot 9\theta = \cot 81^\circ\) ### Step 2: Use the cotangent identity We know that: \[ \cot A \cdot \cot (90^\circ - A) = 1 \] This means: - \(\cot 9^\circ \cdot \cot 81^\circ = 1\) - \(\cot 18^\circ \cdot \cot 72^\circ = 1\) - \(\cot 27^\circ \cdot \cot 63^\circ = 1\) - \(\cot 36^\circ \cdot \cot 54^\circ = 1\) ### Step 3: Group the cotangents Now, we can group the cotangents: \[ (\cot 9^\circ \cdot \cot 81^\circ) \cdot (\cot 18^\circ \cdot \cot 72^\circ) \cdot (\cot 27^\circ \cdot \cot 63^\circ) \cdot (\cot 36^\circ \cdot \cot 54^\circ) \cdot \cot 45^\circ \] ### Step 4: Calculate the product Each of the pairs of cotangents equals 1: \[ 1 \cdot 1 \cdot 1 \cdot 1 \cdot \cot 45^\circ \] Since \(\cot 45^\circ = 1\), we have: \[ 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 = 1 \] ### Final Answer Thus, the value of the expression is: \[ \boxed{1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If theta=9^@ , then what is the value of cot theta cot2 theta cot3 theta cot4 theta cot5 theta cot6 theta cot7 theta cot8 theta cot9 theta ? यदि theta=9^@ ,तो cot theta cot2 theta cot3 theta cot4 theta cot5 theta cot6 theta cot7 theta cot8 theta cot9 theta का मान क्या होगा?

Show that cot theta* cot 2theta+ cot 2theta *cot 3theta + 2 = cot theta(cot theta - cot 3theta)

Prove that: cot theta cot2 theta+cot2 theta cot3 theta+2=cot theta(cot theta-cot3 theta)

prove that cot theta.cot2 theta+cot2 theta*cot3 theta+2=cot theta(cot theta-cot3 theta)

If "cot" theta "cot" 7 theta + "cot" theta "cot" 4 theta + "cot" 4 theta "cot" 7 theta = 1, " then" theta =

Solve: cot5theta=cot2theta

If 6cot theta+2cos ec theta=cot theta+5coec theta then cos theta=

Prove that cot theta-tan theta=2cot 2 theta .

(cot2 theta-cot3 theta)/(cot theta) is equal to