Home
Class 14
MATHS
A mixture of alcohol and water contains ...

A mixture of alcohol and water contains 7% alcohol. How much mixture (in litres) is required to get 357 litres of alcohol?

A

6300

B

4200

C

4900

D

5100

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of how much mixture is required to obtain 357 liters of alcohol when the mixture contains 7% alcohol, we can follow these steps: ### Step-by-Step Solution: 1. **Understand the Composition of the Mixture:** The mixture contains 7% alcohol. This means that in every 1 liter of the mixture, there are 0.07 liters of alcohol. 2. **Set Up the Equation:** Let \( x \) be the amount of mixture (in liters) needed to obtain 357 liters of alcohol. Since 7% of the mixture is alcohol, we can express this relationship as: \[ 0.07x = 357 \] 3. **Solve for \( x \):** To find \( x \), we need to isolate it in the equation. We can do this by dividing both sides of the equation by 0.07: \[ x = \frac{357}{0.07} \] 4. **Calculate \( x \):** Now, we perform the division: \[ x = \frac{357}{0.07} = 5100 \] 5. **Conclusion:** Therefore, the amount of mixture required to get 357 liters of alcohol is 5100 liters. ### Final Answer: The required amount of mixture is **5100 liters**. ---
Promotional Banner

Similar Questions

Explore conceptually related problems

A litre of alcohol weighs

A 50 litre mixture of water and alcohol contains 10% alcohol. How much more alcohol must be added to make the strength of alcohol 40% in the new mixture? (a)25 (b)30 (c)20 (d)23

80 litre mixture of milk and water contains 10% milk . How much milk (in litres) must be added to make water percentage in the mixture as 80% ?