Home
Class 14
MATHS
Arrange the fractions (3)/(4),(5)/(12),(...

Arrange the fractions `(3)/(4),(5)/(12),(13)/(16),(16)/(29),(3)/(8)` in their descending order of magnitude.

A

`(3)/(4) gt (3)/(8) gt (13)/(16) gt (16)/(29) gt (5)/(12)`

B

`(3)/(8) gt (5)/(12) gt (16)/(29) gt (3)/(4) gt (13)/(16)`

C

`(13)/(16) gt (3)/(4)gt (16)/(29) gt (5)/(12) gt (3)/(8)`

D

`(13)/(16) gt (16)/(29) gt (3)/(4) gt (5)/(12) gt (3)/(8)`

Text Solution

AI Generated Solution

The correct Answer is:
To arrange the fractions \( \frac{3}{4}, \frac{5}{12}, \frac{13}{16}, \frac{16}{29}, \frac{3}{8} \) in descending order, we will compare them step by step. ### Step 1: Find a common denominator To compare the fractions easily, we can find a common denominator. The least common multiple (LCM) of the denominators \( 4, 12, 16, 29, \) and \( 8 \) is \( 464 \). ### Step 2: Convert each fraction to have the common denominator Now we convert each fraction to have the denominator \( 464 \): 1. \( \frac{3}{4} = \frac{3 \times 116}{4 \times 116} = \frac{348}{464} \) 2. \( \frac{5}{12} = \frac{5 \times 39.333}{12 \times 39.333} = \frac{164.666}{464} \) (we can round this to \( \frac{165}{464} \) for simplicity) 3. \( \frac{13}{16} = \frac{13 \times 29}{16 \times 29} = \frac{377}{464} \) 4. \( \frac{16}{29} = \frac{16 \times 16}{29 \times 16} = \frac{256}{464} \) 5. \( \frac{3}{8} = \frac{3 \times 58}{8 \times 58} = \frac{174}{464} \) ### Step 3: List the converted fractions Now we have the following fractions with a common denominator: - \( \frac{3}{4} = \frac{348}{464} \) - \( \frac{5}{12} = \frac{165}{464} \) - \( \frac{13}{16} = \frac{377}{464} \) - \( \frac{16}{29} = \frac{256}{464} \) - \( \frac{3}{8} = \frac{174}{464} \) ### Step 4: Compare the numerators Now we can compare the numerators: - \( 348 \) (from \( \frac{3}{4} \)) - \( 165 \) (from \( \frac{5}{12} \)) - \( 377 \) (from \( \frac{13}{16} \)) - \( 256 \) (from \( \frac{16}{29} \)) - \( 174 \) (from \( \frac{3}{8} \)) ### Step 5: Arrange in descending order Now, we arrange the fractions based on the numerators in descending order: 1. \( \frac{13}{16} = \frac{377}{464} \) (largest) 2. \( \frac{3}{4} = \frac{348}{464} \) 3. \( \frac{3}{8} = \frac{174}{464} \) 4. \( \frac{16}{29} = \frac{256}{464} \) 5. \( \frac{5}{12} = \frac{165}{464} \) (smallest) ### Final Answer The fractions in descending order are: \[ \frac{13}{16}, \frac{3}{4}, \frac{3}{8}, \frac{16}{29}, \frac{5}{12} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Arrange the fractions (4)/(5),(7)/(10),(8)/(15) and (17)/(30) in descending order.

Arrangement of the fractions (4)/(3) , (2)/(9) , - (7)/(8) , (5)/(12) into ascending order is

Arrangement of the fractions (4)/(3), -(2)/(9) , -(7)/(8), (5)/(12) into ascending order is

Arrange the numbers (1)/(4), (13)/(16), (5)/(8) in the descending order.

Arrange the fractions frac(5)(6) , frac(3)(4) , frac(4)(13) and frac(7)(9) in ascending order.

If the fractions (2)/(5),(3)/(8),(4)/(9),(5)/(13) and (6)/(11) are arranged ascending order of their values, which one will be the fourth? (2)/(5) (b) (3)/(8)(c)(4)/(9) (d) (5)/(13) (e) None of these

Arrange ( 7)/( 9) , ( 5)/( 8 ) and (3)/( 7) in the descending order.

Add the fractions 5 3/8 and 5/16

Compare the fractions (i) 3/5, 5/8 (ii) 9/16, 13/24