Home
Class 14
MATHS
x=(4)/(2sqrt(3)+3sqrt(2)) then find the ...

`x=(4)/(2sqrt(3)+3sqrt(2))` then find the value of `(x + (1)/(x))`

A

a. `((10sqrt(3)+15sqrt(2)))/(12)`

B

b. `((10sqrt(3)-15sqrt2))/(12)`

C

c. `(-(10sqrt(3)-33sqrt(2)))/(12)`

D

d. `((10sqrt(3)+33sqrt(2)))/(12)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( x = \frac{4}{2\sqrt{3} + 3\sqrt{2}} \) and find the value of \( x + \frac{1}{x} \), we can follow these steps: ### Step 1: Find \( \frac{1}{x} \) To find \( \frac{1}{x} \), we take the reciprocal of \( x \): \[ \frac{1}{x} = \frac{2\sqrt{3} + 3\sqrt{2}}{4} \] ### Step 2: Rationalize \( x \) To simplify \( x \), we can rationalize the denominator: \[ x = \frac{4}{2\sqrt{3} + 3\sqrt{2}} \cdot \frac{2\sqrt{3} - 3\sqrt{2}}{2\sqrt{3} - 3\sqrt{2}} = \frac{4(2\sqrt{3} - 3\sqrt{2})}{(2\sqrt{3})^2 - (3\sqrt{2})^2} \] Calculating the denominator: \[ (2\sqrt{3})^2 = 4 \cdot 3 = 12 \quad \text{and} \quad (3\sqrt{2})^2 = 9 \cdot 2 = 18 \] Thus, \[ (2\sqrt{3})^2 - (3\sqrt{2})^2 = 12 - 18 = -6 \] Now substituting back: \[ x = \frac{4(2\sqrt{3} - 3\sqrt{2})}{-6} = -\frac{2(2\sqrt{3} - 3\sqrt{2})}{3} \] ### Step 3: Simplify \( x \) This simplifies to: \[ x = -\frac{4\sqrt{3}}{3} + 2\sqrt{2} \] ### Step 4: Calculate \( x + \frac{1}{x} \) Now we need to find \( x + \frac{1}{x} \): \[ x + \frac{1}{x} = \left(-\frac{4\sqrt{3}}{3} + 2\sqrt{2}\right) + \left(\frac{2\sqrt{3} + 3\sqrt{2}}{4}\right) \] ### Step 5: Find a common denominator The common denominator for the terms is 12: \[ x + \frac{1}{x} = \left(-\frac{16\sqrt{3}}{12} + \frac{24\sqrt{2}}{12}\right) + \left(\frac{6\sqrt{3}}{12} + \frac{9\sqrt{2}}{12}\right) \] ### Step 6: Combine the fractions Combining the fractions: \[ x + \frac{1}{x} = \frac{-16\sqrt{3} + 6\sqrt{3} + 24\sqrt{2} + 9\sqrt{2}}{12} = \frac{-10\sqrt{3} + 33\sqrt{2}}{12} \] ### Step 7: Final result Thus, the final value of \( x + \frac{1}{x} \) is: \[ x + \frac{1}{x} = \frac{33\sqrt{2} - 10\sqrt{3}}{12} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=1-sqrt(2) then find the value of (x-(1)/(x))^(3)

If x=1-sqrt(2) then find the value of (x-(1)/(x))^(3)

If x=sqrt(2)-1 then find the value of ((1)/(x)-x)^(3) :-

If x = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)) , find the value of x^(2) + (1)/(x^(2)) .

If x=(1)/(2-sqrt(3)) then find the value of x+(1)/(x)

If x=3+2sqrt(2), then find the value of sqrt(x)+(1)/(x)

If x=(2-sqrt(3))/(2+sqrt(3)) , find the value of x+(1)/(x) .

If x = (sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3)) , find the value of x^(3) + (1)/(x^(3)) .

x=(2-sqrt(3))/(2+sqrt(3)), find the value of x+(1)/(x)

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)), then find the value of x^(2)+y^(2)