Home
Class 14
MATHS
If p + (1)/(p)=sqrt(10), then find the v...

If `p + (1)/(p)=sqrt(10)`, then find the value of `p^(4) + (1)/(p^(4))`.

A

52

B

60

C

62

D

65

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the value of \( p^4 + \frac{1}{p^4} \) given that \( p + \frac{1}{p} = \sqrt{10} \). ### Step 1: Square the given equation We start with the equation: \[ p + \frac{1}{p} = \sqrt{10} \] Now, we square both sides: \[ \left(p + \frac{1}{p}\right)^2 = (\sqrt{10})^2 \] This gives us: \[ p^2 + 2 + \frac{1}{p^2} = 10 \] ### Step 2: Rearrange to find \( p^2 + \frac{1}{p^2} \) From the equation above, we can rearrange it to isolate \( p^2 + \frac{1}{p^2} \): \[ p^2 + \frac{1}{p^2} = 10 - 2 = 8 \] ### Step 3: Square the result from Step 2 Now, we need to find \( p^4 + \frac{1}{p^4} \). We can do this by squaring \( p^2 + \frac{1}{p^2} \): \[ \left(p^2 + \frac{1}{p^2}\right)^2 = 8^2 \] This expands to: \[ p^4 + 2 + \frac{1}{p^4} = 64 \] ### Step 4: Rearrange to find \( p^4 + \frac{1}{p^4} \) Now, we can rearrange this equation to isolate \( p^4 + \frac{1}{p^4} \): \[ p^4 + \frac{1}{p^4} = 64 - 2 = 62 \] ### Final Answer Thus, the value of \( p^4 + \frac{1}{p^4} \) is: \[ \boxed{62} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If p-1/(p)=4 , find the value of p^(4)+1/(p^(4)) .

If P/7 = 4 , then find the value of P

Find the value of p p-5(1)/(4)=3(1)/(3)

If (2p)/(p^(2)-2p+1)=(1)/(4),p!=0, then the value of p+(1)/(p)