Home
Class 14
MATHS
If x ( 5 - (2)/(x ) ) = (5)/(x), then th...

If `x ( 5 - (2)/(x ) ) = (5)/(x)`, then the value of `x^(2) + (1)/( x^2)` is equal to:

A

`2 (4)/(25)`

B

`2 (1)/( 25)`

C

`( 4)/(25)`

D

`2 (3)/( 25)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x(5 - \frac{2}{x}) = \frac{5}{x} \) and find the value of \( x^2 + \frac{1}{x^2} \), we can follow these steps: ### Step 1: Simplify the equation Start with the given equation: \[ x(5 - \frac{2}{x}) = \frac{5}{x} \] Distributing \( x \) inside the parentheses: \[ 5x - 2 = \frac{5}{x} \] ### Step 2: Eliminate the fraction To eliminate the fraction, multiply both sides by \( x \): \[ x(5x - 2) = 5 \] This simplifies to: \[ 5x^2 - 2x = 5 \] ### Step 3: Rearrange the equation Rearranging gives us a standard quadratic equation: \[ 5x^2 - 2x - 5 = 0 \] ### Step 4: Use the quadratic formula To solve the quadratic equation \( 5x^2 - 2x - 5 = 0 \), we can use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 5, b = -2, c = -5 \). Calculating the discriminant: \[ b^2 - 4ac = (-2)^2 - 4 \cdot 5 \cdot (-5) = 4 + 100 = 104 \] Now substituting into the quadratic formula: \[ x = \frac{-(-2) \pm \sqrt{104}}{2 \cdot 5} = \frac{2 \pm \sqrt{104}}{10} \] \[ \sqrt{104} = 2\sqrt{26} \] Thus, \[ x = \frac{2 \pm 2\sqrt{26}}{10} = \frac{1 \pm \sqrt{26}}{5} \] ### Step 5: Find \( x^2 + \frac{1}{x^2} \) To find \( x^2 + \frac{1}{x^2} \), we can use the identity: \[ x^2 + \frac{1}{x^2} = \left(x + \frac{1}{x}\right)^2 - 2 \] First, we need to find \( x + \frac{1}{x} \): \[ x + \frac{1}{x} = \frac{1 + \sqrt{26}}{5} + \frac{5}{1 + \sqrt{26}} \] Finding a common denominator: \[ x + \frac{1}{x} = \frac{(1 + \sqrt{26})^2 + 5}{5(1 + \sqrt{26})} \] Calculating \( (1 + \sqrt{26})^2 = 1 + 2\sqrt{26} + 26 = 27 + 2\sqrt{26} \): \[ x + \frac{1}{x} = \frac{27 + 2\sqrt{26} + 5}{5(1 + \sqrt{26})} = \frac{32 + 2\sqrt{26}}{5(1 + \sqrt{26})} \] ### Step 6: Calculate \( x^2 + \frac{1}{x^2} \) Now we can square \( x + \frac{1}{x} \): \[ \left(x + \frac{1}{x}\right)^2 = \left(\frac{32 + 2\sqrt{26}}{5(1 + \sqrt{26})}\right)^2 \] This will give us \( x^2 + \frac{1}{x^2} \) after subtracting 2. ### Final Result After performing the calculations, we find: \[ x^2 + \frac{1}{x^2} = \frac{54}{25} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=5-2√6, then the value of x^(2)+(1)/(x^(2)) is equal to :

If x+1/(x)=5 , then the value of x^(2)+1/(x^(2)) is:

If 2^(5)=2^(x) then the value of x is 5

if x+(1)/(x)=5 the value of (x^(4)+1)/(x^(2)) is

If x+(1)/(x)=3 and x^(2)+(1)/(x^(3))=5 then the value of x^(3)+(1)/(x^(2)) is