Home
Class 14
MATHS
If sin 7x = cos 11x , 0^(@) lt x lt 90^(...

If `sin 7x = cos 11x , 0^(@) lt x lt 90^(@)`, then the value of `tan 9x` is:

A

`( sqrt3)/( 2)`

B

1

C

`(1)/( sqrt3)`

D

`sqrt3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin 7x = \cos 11x \) for \( 0^\circ < x < 90^\circ \) and find the value of \( \tan 9x \), we can follow these steps: ### Step 1: Use the co-function identity We know that \( \cos \theta = \sin(90^\circ - \theta) \). Therefore, we can rewrite the equation: \[ \sin 7x = \cos 11x \implies \sin 7x = \sin(90^\circ - 11x) \] ### Step 2: Set the arguments equal Since the sine function is equal for two angles, we can set the arguments equal to each other: \[ 7x = 90^\circ - 11x \] ### Step 3: Solve for \( x \) Now, we will solve for \( x \): \[ 7x + 11x = 90^\circ \] \[ 18x = 90^\circ \] \[ x = \frac{90^\circ}{18} = 5^\circ \] ### Step 4: Find \( 9x \) Now that we have \( x \), we can find \( 9x \): \[ 9x = 9 \times 5^\circ = 45^\circ \] ### Step 5: Calculate \( \tan 9x \) Now we can find \( \tan 9x \): \[ \tan 9x = \tan 45^\circ = 1 \] ### Final Answer Thus, the value of \( \tan 9x \) is: \[ \boxed{1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin x - cos x = 0, 0^(@) lt x lt 90^(@) then the value of ( sec x + cosec x)^(2) is:

If 7 sin ^(2) x + 3 cos ^(2) x =4, 0 lt x lt 90^(@), then what is the value of tan x ?

If tan x = 1, 0 lt x lt 90^(@) , then what is the value of 2 sin x cos x?

If tan x = (3)/( 4) , 0 lt x lt 90^(@) , then what is value of sin x cos x ?

If sqrt(3) sin x - cos x = 0 and 0 lt x lt 90 , find the value of x .

If tan^(2) x + 1/(tan^(2)x) =2 and 0^(@) lt x lt 90^(@) , then what is the value of x ?

If sintheta - cos theta = 7/13 and 0 lt theta lt 90^(@) ,then the value of sin theta + cos theta is:

If sin7x=cos11x , then the value of tan9x+cot9x is