Home
Class 12
MATHS
If alpha, beta are the roots of the equa...

If alpha, beta are the roots of the equation λ `(x^(2)-x)+x+5=0` and if lambda_1 and lambda_2 are two values of lambda obtained from `(alpha)/(beta)+(beta)/(alpha)=(4)/(5)`, then `(lambda_(1))/(lambda_(2)^(2))+(lambda_(2))/(lambda_(1)^(2))=`

Text Solution

Verified by Experts

The given equation can be written as
`lamda x^(2)-(lamda-1)x+5=0`
`:'alpha, beta` are the roots of the this equation.
`:.alpha+beta=(lamda-1)/(lamda)` and `alpha beta=5/(lamda)`
But given `(alpha)/(beta)+(beta)/(alpha)=4/5`
`implies(alpha^(2)+beta^(2))/(alpha beta)=4/5`
`implies((alpha+beta)^(2)-2alpha beta)/(alpha beta)=4/5 implies(((lamda-1)^(2))/(lamda^(2))-10/(lamda))/(5/(lamda))=4/5`
`=((lamda-1)^(2)-10lamda)/(5 lamda)=4/5implieslamda^(2)-12lamda+1=4lamda`
`implieslamda^(2)-16lamda+1=0`
It is a quadratic in `lamda` let roots be `lamda_(1)` and `lamda_(2)`, then
`lamda_(1)+lamda_(2)=16` and `lamda_(1)lamda_(2)=1`
`:.(lamda_(1))/(lamda_(2))+(lamda_(2))/(lamda_(1))=(lamda_(1)^(2)+lamda_(2)^(2))/(lamda_(1)lamda_(2))=((lamda_(1)+lamda_(2))^(2)-2lamda_(1)lamda_(2))/(lamda_(1)lamda_(2))`
`=((16)^(2)-2(1))/1=254`
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha , beta are the roots of lambda(x^(2)+x)+x+5 =0 and lambda_(1) , lambda_(2) are the two values of lambda for which alpha , beta are connected by the relation (alpha)/(beta)+(beta)/(alpha) =4, then the value of (lambda_(1))/(lambda_(2))+(lambda_(2))/(lambda_(1)) =

If alpha and beta are the root of the equation x^(2)-x+1=0 then alpha^(2009)+beta^(2009)=

If alpha , beta are the roots of the equation : x^(2) + x sqrt(alpha) + beta = 0 , then the values of alpha and beta are :

If alpha and beta are roots of the equation x^(2) + x + 1 = 0, then alpha^(2) + beta^(2) is

If alpha, beta are the roots of 4 x^(2)-16 x+c=0 , c >0 such that 1

If the roots of the equation (x^(2) -bx)/(ax -c) = (lambda - 1)/(lambda + 1) are shuch that alpha + beta = 0, then value of lambda is :

If the roots of the equation (x^(2) -bx)/(ax - c) = (lambda - 1)/(lambda + 1) are such that alpha + beta =0 , then the value of lambda is :

If alpha and beta are the roots of the equation 2x^2-3x + 4=0 , then the equation whose roots are alpha^2 and beta^2, is

If alpha, beta and gamma are the roots of the equation x^(3)-8x+8=0 , then sum alpha^(2) and sum (1)/(alpha beta) are respectively