Home
Class 12
MATHS
If alpha,beta be the roots of the equat...

If `alpha,beta ` be the roots of the equation `3x^2+2x+1=0,` then find value of `((1-alpha)/(1+alpha))^3+((1-beta)/(1+beta))^3`

Text Solution

Verified by Experts

Let `(1-alpha)/(1+alpha)=ximpliesa=(1-x)/(1+x)`
So replacing `x` by `(1-x)/(1+x)` in the given equation we get
`3((1-x)/(1+x))^(2)+2((1-x)/(1+x))|+1=0impliesx^(2)-2x+3=0` …….i
It is clear that `(1-alpha)/(1+alpha)` and `(1-beta)/(1+beta)` are the roots fo Eq. (i)
`:.((1-alpha)/(1+alpha))+((1-beta)/(1+beta))=2`..........ii
and `((1-alpha)/(1+alpha))((1-beta)/(1+beta))=3`.......iii
`:.((1-alpha)/(1+alpha))^(3)+((1-beta)/(1+beta))^(3)=((1-alpha)/(1+alpha) +(1-beta)/(1+beta))^(3)-3`
`((1-alpha)/(1+alpha))((1-beta)/(1+beta))((1-alpha)/(1+alpha)+(1-beta)/(1+beta))=2^(3)-3.3.2=8-18=-10`
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta be the roots of the equation x^2-px+q=0 then find the equation whose roots are q/(p-alpha) and q/(p-beta)

If alpha and beta are the roots of the equation x^(2) - p(x + 1) - q = 0 , then the value of : (alpha^(2) + 2 alpha + 1)/(alpha^(2)+ 2 alpha + q) + (beta^(2) + 2 beta + 1)/(beta^(2) + 2 beta + q) is :

If alpha, beta are the roots of the equation x^(2)+x+1=0 , then the equation whose roots are (alpha)/(beta) and (beta)/(alpha) is

If alpha,beta,gamma are the roots of x^3-x^2-1=0 then the value of (1+alpha)/(1-alpha)+(1+beta)/(1-beta)+(1+gamma)/(1-gamma) is equal to

If alpha,beta,gamma,sigma are the roots of the equation x^4+4x^3-6x^2+7x-9=0, then the value of (1+alpha^2)(1+beta^2)(1+gamma^2)(1+sigma^2) is

If alpha , beta are the roots of the equation : x^(2) + x sqrt(alpha) + beta = 0 , then the values of alpha and beta are :

alpha+beta are the zeroes of the polynomial x^(2)-6x+4 , then the value of ((alpha+beta)^(2)-2alpha beta)/(alpha beta) is

If alpha, beta the roots of 8x^(2) - 3x + 27 = 0 , then the value of [ ( (alpha^(2))/(beta))^(1//3) + ((beta^(2))/(alpha))^(1//3) ] is ,

If alpha and beta are the zeroes of the polynomial f(x) = 3x^(2)+5x+7 then find the value of (1)/(alpha^(2))+(1)/(beta^(2)) .

If alpha and beta are roots of the equation x^(2) + x + 1 = 0, then alpha^(2) + beta^(2) is