Home
Class 12
MATHS
Solve the inequality (x+3)(3x-2)^5(7-x)^...

Solve the inequality `(x+3)(3x-2)^5(7-x)^3(5x+8)^2 >= 0.`

Text Solution

Verified by Experts

We have `(x+3)(3x-2)^(2)(7-x)^(2)(5x+8)^(2)ge0`
`implies-(x+3)(3x-2)^(5)(x-7)^(3)(5x+8)^(2)ge0`
`implies(x+3)(3x-2)^(5)(x-7)^(3)(5x+8)^(2)le0`
[take before `x,+ve` sign in all brackets]
The critial points are `(-3),(-8/5),2/3,7`.
Hence `x epsilon (-oo,-3)uu[2/3,7]uu{-8/5}`.
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the inequality 2 le 3x -4 le 5

Solve the inequality -14 lt (3(x-2))/( 5) le 0

Solve the equation 5^(x^(2)+3x+2)=1

Solve the inequality -12 lt 4 - (3x)/(-5) le 2

Solve the inequality ((x - 2)^10000 (x + 1)^235 (x-1/2)^971 (x+8))^4 / (x^500 (x-3)^75 (x+2)^93) >=0

Solve the inequality 7 le ((3x+11))/(2) le 11.

Solve the inequality .^(x-1)C_(4)-.^(x-1)C_(3)-(5)/(2).^(x-2)C_(2)lt0,x inN .

Solve inequality -3 le 4 - (3x)/(-5) le 2

Solve the inequation 3^(x+2)gt(1/9)^(1//x) .

Solve the inequality for real x : (3(x-2))/( 5) le (5(2-x))/(3)