Home
Class 12
MATHS
Solve the equation log((log(5)x))5=2...

Solve the equation `log_((log_(5)x))5=2`

Text Solution

Verified by Experts

We have `log_((log_(5)x))5=2`
Base of logarithm `gt0` and `!=1`
`:.log_(4)xgt0` and `log_(5)x!=1`
`impliesxgt1` and `x!=5`
`:.` The original equation is equivalent to
`log_(5)x=5^(1//2)=sqrt(5)` ltrgt `:.x_(1)=5^(sqrt(5))`
Here `5^(sqrt(5))` is the only root of the original equation.
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the equation log_(3)(5+4log_(3)(x-1))=2

Solve the equation: 2log_(3)x+log_(3)(x^(2)-3)=log_(3)0.5+5^(log_(5)(log_(3)8)

Solve the equation log_(2)(3-x)-log_(2)(("sin"(3pi)/4)/(5-x))=1/2+log_(2)(x+7)

Solve the equation log_((x^(3)+6))(x^(2)-1)=log_((2x^(2)+5x))(x^(2)-1)

Solve the equation x^(log_(x)(x+3)^(2))=16 .

Solve the equation log_(((2+x)/10))7=log_((2/(x+1)))7 .

Solve the equation: log_(x)^(3)10-6log_(x)^(2)10+11log_(x)10-6=0

Solve the equationi log_((x^(2)-1))(x^(3)+6)=log_((x^(2)-1))(2x^(2)+5x)

Solve the equation log(3x^(2)+x-2)=2log(3x-2) .

Solve the inequation log_((x-3))(2(x^(2)-10x+24))gelog_((x-3))(x^(2)-9)