Home
Class 12
MATHS
Solve the equation: log(x)^(3)10-6log...

Solve the equation:
`log_(x)^(3)10-6log_(x)^(2)10+11log_(x)10-6=0`

Text Solution

Verified by Experts

`Put log_(x)10=t` in the given equation we get
`t^(3)-6t^(2)+11t-6=0implies(t-1)(t-2)(t-3)=0`
then `{(t=1),(t=2),(t=3):}`
It follows that
`{(log_(x)10=1),(log_(x)10=2),(log_(x)10=3):}implies{(x=10),(x^(2)=10),(x^(3)=10):}implies{(x=10),(x=sqrt(10)),(x=root(3)(10)):} [ :' xgt0` and `!=`]
`[:' xgt0 "and" !=1]` ltrbgt `:.x_(1)=10,x_(2)=sqrt(10)` and `x_(3)=root(3)(10)` are the roots of the original equation.`
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the equation log_(3)(5+4log_(3)(x-1))=2

Solve the equation log(3x^(2)+x-2)=2log(3x-2) .

Solve the equation log_((log_(5)x))5=2

Solve the equation x^(log_(x)(x+3)^(2))=16 .

Solve the equation 2x^(log_(4)^(3))+3^(log_(4)^(x))=27

Solve the equation log_(((2+x)/10))7=log_((2/(x+1)))7 .

Solve the equation log_((x^(3)+6))(x^(2)-1)=log_((2x^(2)+5x))(x^(2)-1)

Solve the equationi log_((x^(2)-1))(x^(3)+6)=log_((x^(2)-1))(2x^(2)+5x)

Solve the equation: 2log_(3)x+log_(3)(x^(2)-3)=log_(3)0.5+5^(log_(5)(log_(3)8)

Solve the equation 2log2x=log(7x-2-2x^(2))