Home
Class 12
MATHS
If x(1),x(2),x(3),.,x(n) are the roots o...

If `x_(1),x_(2),x_(3),.,x_(n)` are the roots of the equation `x^(n)+ax+b=0`, the value of
`(x_(1)-x_(2))(x_(1)-x_(3))(x_(1)-x_(4))…….(x_(1)-x_(n))` is

A

(a) `nx_(1)+b`

B

(b) `n(x_(1))^(n-1)`

C

(c) `n(x_(1))^(n-1)+a`

D

(d) `n(x_(1))^(n-1)+b`

Text Solution

Verified by Experts

`:'x^(n)+ax+b=(x-x_(1))L(x-x_(2))(x-x_(3))…..(x-x_(n))`
`implies(x-x_(2))(x-x_(3))…….(x-x_(n))=(x^(n)+ax+b)/(x-x_(1))`
On taking `lim_(xtox_(1))` both sides we get
`(x_(1)-x_(2))(x_(1)-x_(3))……………(x_(1)-x_(n))=lim_(xtox_(1))(x^(n)+ax+b)/(x-x_(1))[ 0/0 "from"]`
`=lim_(xtox_(1))(nx^(n-1)+a)/1=n(x_(1))^(n-1)+a`
Promotional Banner

Similar Questions

Explore conceptually related problems

If m, n are the roots of the equations x^(2) -2x+ 3 =0 . Find the value of (1)/(m^(2)) +(1)/( n^(2))

If m and n are the roots of the equations x^(2) - 6x+ 2 =0 then the value of (1)/(m) + (1)/( n) is :

If m and n are the roots of the equations 2x^(2)- 4x + 1=0 Find the value of (m+n) ^(2) +4mn.

Find the roots of the equation (1)/(x)-(1)/(x-2)=3, x ne 0,2

If m and n are the roots of the quadratic equations x^(2) - 3x+1 =0 , then find the value of (m)/( n) + ( n)/(m)

Let x_(1), x_(2) be the roots of the equation x^(2)-3 x+p=0 and let x_(3), x_(4) be the roots of the equation x^(2)-12 x+q=0 . If the numbers x_(1), x_(2) x_(3), x_(4) (in order) form an increasing G.P. then,

If x^(2)-x+1=0 then the value of sum_(n=1)^(5)(x^(n)+(1)/(x^(n)))^(2) is

If x_(1), x_(2),"……….",x_(n) are n non zero real numbers such that (x_(1)^(2) + x_(2)^(2) + "...."+x_(n-1)^(2))( x_(2)^(2) + x_(3)^(2) + x_(3)^(2) + "......" + x_(n)^(2))le ( x_(1) x_(2) + x_(2) x_(3)+"....."+x_(n-1)x_(n))^(2) , then x_(1) , x_(2) ,".....",x_(n) are in :

The coefficient of x^(n) in the expansion of (1+x)(1-x)^(n) is