Home
Class 12
MATHS
If cos^(4)theta+p, sin^(4)theta+p are th...

If `cos^(4)theta+p, sin^(4)theta+p` are the roots of the equation `x^(2)+a(2x+1)=0` and `cos^(2)theta+q,sin^(2)theta+q` are the roots of the equation `x^(2)+4x+2=0` then a is equal to

A

a) -2

B

b) -1

C

c) 1

D

d) 2

Text Solution

Verified by Experts

`:'cos^(4) theta-sin^(4)theta=cos 2 theta`
`impliescos^(4)theta-sin^(4) theta=cos^(2)theta-sin^(2) theta`
`implies(cos^(4) theta+p)-(sin^(4) theta+p)=(cos^(2)theta+q)-(sin^(2)theta+q)`
`implies(sqrt(4a^(2)-4a))/1=(sqrt(16-8)/1[ :' alpha-beta=(sqrt(D))/a]`
`implies4a^(2)-4a=8` or `a^(2)-a-2=0`
or `(a-2)(a+1)=0` or `a=2,-1`
Promotional Banner

Similar Questions

Explore conceptually related problems

If p and q are the roots of the equation x^(2)+p x+q=0 then

If p and q are the roots of the equation x^2-p x+q=0 , then

Solve 7 cos^(2) theta+3 sin^(2) theta=4 .

int_0^(2pi) theta sin^2 theta cos theta d theta is equal to :

If p and q are the roots of the equation x^(2)-3x+2=0 , find the value of (1)/(q)-(1)/(q) .

If p and q are the roots of the equations x^(2) - 3x+ 2 = 0 , find the value of (1)/(p) - (1)/(q)

Let x_(1), x_(2) be the roots of the equation x^(2)-3 x+p=0 and let x_(3), x_(4) be the roots of the equation x^(2)-12 x+q=0 . If the numbers x_(1), x_(2) x_(3), x_(4) (in order) form an increasing G.P. then,

If 1-cos^(2)theta=(3)/(4) ,then sin theta is:

If one root of the equation x^(2)+p x+12=0 is 4, while the equation x^(2)+p x+q=0 has equal roots then the value of q is

If 2 sin^(2) theta +5 cos theta=4 , Prove that cos theta=1//2