Home
Class 12
MATHS
Solve the equation x^2+p x+45=0. it is g...

Solve the equation `x^2+p x+45=0.` it is given that the squared difference of its roots is equal to 144

Text Solution

Verified by Experts

Let `alpha, beta` be the roots of the equation `x^(2)+px+45=0` and given that
`(alpha-beta^(2))=144`
`impliesp^(2)-4.1.45=144[ :' alpha-beta=(sqrt(D))/a]`
`impliesp^(2)=324`
`:.p=(+-18)`
On substituting `p=18` in the given equation we obtain
`x^(2)+18x+45=0`
`implies(x+3)(x+15)=0`
`impliesx=-3,5`
and substituting`p=-18` in the given equation we obtain
`x^(2)-18x+45=0`
`(x-3)(x-15)=0`
`impliesx=3,15` ltrbgt Hence the roots of the given are `(-3),(-15),3` and 15.
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the equation x^2 + 3 =0

Solve the equation x^2+3=0 .

Solve the equation 2x^(2)+5x-2 =0

Solve the equation x^2+x/sqrt 2 +2=0

Solve the equation x^(2)-x-2=0 graphically.

Solve the equation x^(2) + (x)/(sqrt(2)) + 1= 0

Solve the equation x^(3)-3x-a=0 for different values of a

Roots of the equation x^(2) -2x+ 1 =0 are :

If the sum of the roots of the equation a x^(2)+b x+c=0 is equal to the sum of the squares of their reciprocals, then