Home
Class 12
MATHS
Let a ,b and c be real numbers such that...

Let `a ,b and c` be real numbers such that `a+2b+c=4` . Find the maximum value of `(a b+b c+c a)dot`

Text Solution

Verified by Experts

Given `a+2b+c=4`
`impliesa=4-2b-c`
Let `y=ab+bc+ca=a(b+c)+bc`
`=(4-2b-c)(b+c)+bc`
`=-2b^(2)+4b-2bc+4c-c^(2)`
`implies2b^(2)+2(c-2)b-4c+c^(2)+y=0`
Since `b epsilonR` so
`4(c-2)^(2)-4xx2xx(-4c+c^(2)+y)ge0`
`implies(c-2)^(2)+8c-2c^(2)-2yge0`
`impliesc^(2)-4c+2y-4le0`
Since `c epsilonR` so `16-4(2y-4)ge0impliesyle4`
Hence maximum value of `ab+bc+ca` is 4.
Aliter
`:'AMgeGM`
`implies((a+b)+(b+c))/2gesqrt((a+b)(b+c))`
`implies2gesqrt((ab+bc+ca+b^(2)))[:'a+2b+c=4]`
`impliesab+bc+cale4-b^(2)`
`:.` Maximum value fo `(ab+bc+ca)` is 4.
Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c and d are four positive real numbers such that abcd=1 , what is the minimum value of (1+a)(1+b)(1+c)(1+d) .

If a,b,c are unit vectors such that a+b+c=0 , then find the value of a.b+b.c+c.a .

If three positive real numbers a,b,c are in A.P. such that abc=4, then the minimum value of b is

If a,b,c and d are odd natural numbers such that a+b+c+d=20, the number of values of the ordered quadruplet (a,b,c,d) is

If a,b,c and d are four real numbers of the same sign, then the value of (a)/(b)+(b)/(c )+(c )/(d)+(d)/(a) lies in the interval

If a, b, c are positive real numbers such that a + b + c = 1 , then prove that a/(b + c)+b/(c+a) + c/(a+b) >= 3/2

If a, b and c real numbers such that a^(2) + b^(2) + c^(2) = 1, then ab + bc + ca lies in the interval :

If a,b,c,d are positive real numbers such that a+b+c +d = 12 , then M = ( a+ b ) ( c + d ) satisfies the relation :

If x^2+3x+5=0 a n d a x^2+b x+c=0 have common root/roots and a ,b ,c in N , then find the minimum value of a+b+ c dot

If a,b, and c are positive integers such that a+b+c le8 , the number of possible values of the ordered triplet (a,b,c) is