Home
Class 12
MATHS
If each pair of the three equations x^(2...

If each pair of the three equations `x^(2)+ax+b=0, x^(2)+cx+d=0` and `x^(2)+ex+f=0` has exactly one root in common then show that `(a+c+e)^(2)=4(ac+ce+ea-b-d-f`)

Text Solution

Verified by Experts

Given equations are
`x^(2)+ax+b=0`……….i
`x^(2)+cx+d=0`…………..ii
`x^(2)+ex+f=0`………….iii
Let `alpha, beta` be the roots of Eq. (i) `beta, gamma` be the roots of Eq. ii and `gamma, delta` be the roots of Eq. iii then
`alpha+beta=-a, alpha beta=b`.........iv ltbr `beta+gamma-c, beta gamma=d`.........v
`gamma+alpha=-e,gamma alpha=f`...........vi
`:.LHS=(a+c+e)^(2)=(-alpha-beta-beta-gamma-gamma-alpha)^(2)`
[from eqs iv , v and vi]
`=4(alpha+beta+gamma)^(2)`........vii
`RHS=4(ac+ce+ea-b-d-f)`
`=4{(alpha+beta)(beta+gamma)+beta+gamma)(gamma+alpha)+(gamma+alpha)`
`(alpha+beta)-alpha beta-beta gamma-gamma alpha)}`
[from eqs iv, v and vi]
`=4(alpha^(2)+beta^(2)+gamma^(2)+2alpha beta+2beta tamma+2 gamma alpha)`
`=4(alpha+beta+gamma)^(2)` ...........iii
From Eq vii and viii then we get
`(a+c+e)^(2)=4(ac+ce+cea-b-d-f)`
Promotional Banner

Similar Questions

Explore conceptually related problems

A value of b for which the equations : x^(2) + bx - 1= 0, x^(2) + x + b = 0 Have one root in common is :

If the equations x^(2)+a x+b=0 and x^(2)+b x+a=0(a ne b) have a common root, then a+b=

The value of 'a' for which the equation x^(3) + ax + 1 = 0 and x^(4) + ax^(2) + 1 =0 has a common root is :

If the equation : x^(2 ) + 2x +3=0 and ax^(2) +bx+ c=0 a,b,c in R have a common root then a: b: c is :

If the equations : x^(2) + 2x + 3 = 0 and ax^(2) + bx + c =0 a, b,c in R, Have a common root, then a: b : c is :

If equations ax^(2)-bx+c=0 (where a,b,c epsilonR and a!=0 ) and x^(2)+2x+3=0 have a common root, then show that a:b:c=1:2:3

If the equations a x^(2)+2 b x+c-0 and a x^(2)+2 c x+b=0 , b ne c have a common root, then (a)/(b+c)=

Find the condition that quadratic equations x^(2)+ax+b=0 and x^(2)+bx+a=0 may have a common root.

If a,b,c are in G.P.L, then the equations ax^(2) + 2bx + c = 0 0 and dx^(2) + 2ex+ f = 0 have a common root if ( d)/( a) , ( e )/( b ) , ( f )/( c ) are in :

If p,q,r are in G.P. and the equations, px^(2) + 2qx + r = 0 and dx^2+2ex + f = 0 have a common root, then show that d/p , e/q, f/r are in A.P.