Home
Class 12
MATHS
If alpha,beta are the roots of x^2+p x+q...

If `alpha,beta` are the roots of `x^2+p x+q=0a n dgamma,delta` are the roots of `x^2+r x+s=0,` evaluate `(alpha-gamma)(alpha-delta)(beta-gamma)(beta-delta)` in lterms of `p ,q ,r ,a n dsdot` Deduce the condition that the equation has a common root.

Text Solution

Verified by Experts

`:'alpha, beta` are the roots of the equation
`x^(2)+px+q=0`
`:.alpha+beta=-p,alpha beta=q`……….i
and `gamma, delta` are the roots of the equation `x^(w2)+rx+s=0`
`:.gamma+delta=-r,gamma delta=s`…ii
Now `(alpha-gamma)(alpha-delta)(beta-gamma)(beta-delta)`
`=[(alpha^(2)-alpha(gamma+delta)+gamma delta][beta^(2)-beta(gamma+delta)+gamma delta]`
`=(alpha^(2)+r alpha +s)(beta^(2)+rbeta+s)` [from Eq (ii) ]
`impliesalpha^(2)+r alpha beta(alpha +beta)+r^(2) alpha beta+s(alpha^(2)+beta^(2))`
`+sr(alpha+beta)+s^(2)`
`=alpha^(2) beta^(2)+r alpha beta(alpha +beta)+r^(2) alpha beta+s[(alpha +beta)^(2)-2alpha beta]`
`+sr(alpha +beta)+s^(2)`
`=q^(2)-pqr+r^(2)q+s(p^(2)-2q)+sr(-p)+s^(2)`
`=(q-s)^(2)-rpq+r^(2)q+sp^(2)-prs`
`=(q-s)^(2)-rq(p-r)+sp(p-r)`
`=(q-s)^(2)+(p-r)(sp-rq)`............iii
For a common root (let `alpha=gamma` or `beta=delta`)
then `(alpha-gamma)(alpha-delta)(beta-gamma)(beta-delta)=0` .........iv
From eqs (iii) and iv) we get
`(q-s)^(2)+(p-r)(sp-rq)=0` ltbr. `=(q-s)^(2)=(p-r)(rq-sp)` which is the required condition.
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Let alpha,beta,gamma be the roots of (x-a) (x-b) (x-c) = d, d != 0 , then the roots of the equation (x-alpha)(x-beta)(x-gamma) + d =0 are :

Let alpha, beta be the roots of x^(2) -x + p = 0 and gamma , delta be the roots of x^(2) - 4x + q = 0 . If alpha, beta, gamma , delta are in G.P., then the integral value sof p and q respectively, are :

Knowledge Check

  • If alpha,beta be the roots of x^(2)+x+2=0 and gamma, delta be the roots of x^(2)+3 x+4=0 then (alpha+gamma)(alpha+delta)(beta+gamma)(beta+delta)=

    A
    a.-18
    B
    b.18
    C
    c.24
    D
    d.44
  • If alpha, beta are the rots of a x^(2)+b x+c=0 and alpha+h, beta+h are the roots of p x^(2)+q x+r=0 then h=

    A
    `(b)/(a)-(q)/(p)`
    B
    `(1)/(2)((b)/(a)-(q)/(p))`
    C
    `-(1)/(2)((a)/(b)-(p)/(q))`
    D
    none of these
  • If alpha and beta are the roots of x^(2) + qx + 1 = 0 and gamma, delta the roots of x^(2) + qx + 1 = 0 , then the value of (alpha - gamma ) (beta - gamma ) (a + delta ) beta + delta) is :

    A
    `p^(2) -q^(2)`
    B
    `q^(2) - p^(2)`
    C
    `p^(2)`
    D
    `q^(2)` .
  • Similar Questions

    Explore conceptually related problems

    If alpha,beta are the roots of x^(2)-3 x+5=0 and gamma, delta are the roots of x^(2)+5 x-3=0 , then the equation whose roots are alpha gamma+beta delta and alpha delta+beta gamma is

    If alpha,beta are roots of the equation 6x^(2) + 11x + 3 = 0 then :

    If alpha , beta are the roots of 2 x^(2)-x+7=0 then the equation whose roots are 2-3 alpha and 2-3 beta is

    If alpha and beta are the roots of x^(2)+x+1=0 , then alpha^(16)+beta^(16)=

    If alpha, beta are the roots of 4 x^(2)-16 x+c=0 , c >0 such that 1