Home
Class 12
MATHS
Find the value of x in sqrt(x+2sqrt(x+2s...

Find the value of `x` in `sqrt(x+2sqrt(x+2sqrt(x+2sqrt(3x))))...=x.`

Text Solution

Verified by Experts

Rewrite the given equation
`sqrt(x+2sqrt(x+2sqrt(x+………….+2sqrt(x+2sqrt(x+2x)))))=x`……i
On replacing the last letter x on the LHS of Eq i by the value of `x` expressed by Eq. i w get
`x=ubrace(sqrt(x+2sqrt(x+2sqrt(x+……….+2sqrt(x+2sqrt(3x))))))_(2n"radical signs")`
Further let us replace the last letter x by the same expression again and again yields.
`:. `x=ubrace(sqrt(x+2sqrt(x+2sqrt(x+……….+2sqrt(x+2sqrt(3x))))))_(3n"radical signs")`
`x=ubrace(sqrt(x+2sqrt(x+2sqrt(x+……….+2sqrt(x+2sqrt(3x))))))_(4n"radical signs")=......`
We can write
`x=sqrt(x+2sqrt(x+2sqrt(x+...)))`
`=ubrace(lim_(Ntooo)sqrt(x+2sqrt(x+2sqrt(x+……….+2sqrt(x+2sqrt(3x))))))_(N"radical signs")`
it follows that
`x=sqrt(x+2sqrt(x+2sqrt(x+....)))`
`=sqrt(x+2(sqrt(x+2sqrt(x+...))))=sqrt((x+2x))`
Hence `x^(2)=x+2x`
`impliesx^(2)-3x=0`
`:.x=0,3`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(2)^(8)(sqrt(10-x))/(sqrt(x)+sqrt(10-x))dx is

sqrt(3)x^(2) - sqrt(2)x + 3sqrt(3)=0

The value of int_(2)^(8) (sqrt(10 -x))/(sqrt(x) + sqrt(10) -x)dx is

The value of lim_(xto2a)(sqrt(x-2a)+sqrt(x)-sqrt(2a))/(sqrt(x^2-4a^2)) is

Evaluate int_(0)^(a)(sqrt(x))/(sqrt(x)+sqrt(a-x)) dx

The value of the integral, int_3^6 (sqrt(x))/(sqrt(9 - x) + sqrt(x))dx is :

Find number of solutions of the equation sqrt((x+8)+2sqrt(x+7))+sqrt((x+1)-sqrt(x+7))=4

Solve sqrt(x+3-4sqrt(x-1))+sqrt(x+8-6sqrt(x-1))=1

Given 0 le x le 1/2 then the value of tan[sin^(-1){(x)/(sqrt(2))+(sqrt(1-x^(2)))/(sqrt(2))}-sin^(-1)x] is