Home
Class 12
MATHS
The sum of values of x satisfying the eq...

The sum of values of `x` satisfying the equation `(31+8sqrt(15))^(x^(2)-3)+1=(32+8sqrt(15))^(x^(2)-3)` is

A

3

B

0

C

2

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the equation (2+sqrt(3))^(x^(2)-2x+1)+(2-sqrt(3))^(x^(2)-2x-1)=101/(10(2-sqrt(3))

Find the sum of all real values of X satisfying the equation (x^2-5x+5)^(x^2 + 4x -60) = 1 .

Solve the equation 3sqrt((x+3))-sqrt((x-2))=7

Solve the equation sqrt((6-x))(3^(x^(2)-7.2x+3.9)-9sqrt(3))=0

sqrt(3)x^(2) - sqrt(2)x + 3sqrt(3)=0

THe value of x which satisfy the equation (sqrt(5x^2-8x+3))-sqrt((5x^2-9x+4))=sqrt((2x^2-2x))-sqrt((2x^2-3x+1)) is

Find the number of real values of x satisfying the equation. log_(2)(4^(x+1)+4)*log_(2)(4^(x)+1)=log_(1//sqrt(2)) sqrt((1)/(8))

Integrate the function 1/(sqrt(8+3x-x^(2)))

The number of solutions of the equation sin((pix)/(2sqrt3))=x^2-2sqrt3x+4

Find the value of x satisfying the equation, sqrt((log_3(3x)^(1/3)+log_x(3x)^(1/3))log_3(x^3))+sqrt((log_3(x/3)^(1/3)+log_x(3/x)^(1/3))log_3(x^3))=2