Home
Class 12
MATHS
the roots of the equation (a+sqrt(b))^(x...

the roots of the equation `(a+sqrt(b))^(x^2-15)+(a-sqrt(b))^(x^2-15)=2a` where `a^2-b=1` are

A

`+-2,+-sqrt(3)`

B

`+-4,+-sqrt(14)`

C

`+-3,+-sqrt(5)`

D

`+-6,+-sqrt(20)`

Text Solution

Verified by Experts

The correct Answer is:
B

We have `(a+sqrt(b))(a-sqrt(b))=a^(2)-b=1`[given]
`:.(a+sqrt(b))^(x^(2)-15)+(a-sqrt(b))^(x^(2)-15)=2a`
`implies(a+sqrt(b))^(x^(2)-15)+1/((a+sqrt(b))^(x^(2)-15))=2a`
Let `y=(a+sqrt(b))^(x^(2)-15)`
`impliesy+1/y=2aimpliesy^(2)-2ay+1=0`
`impliesy+(2a+-sqrt(4a^(2)-4))/2=a+-sqrt(a^(2)-1)`
`:.y=a+-sqrt(b)=(a+sqrt(b))^(+-1)[:'a^(2)-b=1]`
`implies(a+sqrt(b)^(x^(2)-15)=(a+sqrt(b))^(+-1)`
`:.x^(2)-15=+-1`
`impliesx^(2)=15+-1impliesx^(2)=16,14`
`impliesx=+-4,+-sqrt(14)`
Promotional Banner

Similar Questions

Explore conceptually related problems

The roots of the equation x^(2)-2sqrt(3)x+3=0 are

The harmonic mean of the roots of the equation : ( 5+ sqrt( 2))x^(2) - ( 4+sqrt( 5))x + 8 + 2 sqrt( 5) = 0 is :

What are the roots of the quadratic equation sqrt(3)x^(2)-2x-sqrt(3)=0 ?

Solve the equation (2+sqrt(3))^(x^(2)-2x+1)+(2-sqrt(3))^(x^(2)-2x-1)=101/(10(2-sqrt(3))

Find the nature of the roots of the quadratic equation sqrt(2)x^(2) - (3)/(sqrt(2))x + (1)/(sqrt(2))=0 .

The number of roots of the equation 1/x+1/(sqrt((1-x^2)))=35/12 is

Is -sqrt(3) a root of the equation x^(2)+(sqrt(3)+1)x+sqrt(3)=0 ?

If the roots of the equations (b-c) x^(2) + (c-a) x+( a-b) =0 are equal , then prove that 2b=a+c

If the roots of the equation : (b-c)x^(2) + (c-a) x + ( a-b) = 0 are equal, then a,b,c are in :