Home
Class 12
MATHS
If x^3+3x^2-9x+c is of the form (x-alpha...

If `x^3+3x^2-9x+c` is of the form `(x-alpha)^2(x-beta)` then `c` is equal to

A

27

B

`-27`

C

5

D

-5

Text Solution

Verified by Experts

The correct Answer is:
B, C

Since `f(x)=x^(3)+3x^(2)-9x+lamda=(x-alpha)^(2)(x-beta)`
`:.alpha`is a double root.
`:.f'(x)=0` has also one root` alpha`.
`:.x^(2)+2x-3=0` or `(x+3)(x-1)=0`
has the root `alpha` which can either `-3` or 1.
If `alpha=1` then `f(1)=0` gives `lamda-5=0implieslamda=5`
If `alpha=-3`, then `f(-3)=0` gives
`-27+27+27+lamda=0`
`implieslamda=-27`
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma are the roots of the equation 2x^(3) -3x^(2) +6x + 1 = 0 then alpha^(2) + beta^(2) + gamma^(2) is equal to…..

If alpha and beta are the roots of x^(2) - ax + b^(2) = 0, then alpha^(2) + beta^(2) is equal to :

Let alpha, beta the roots of the equation (x - a) (x - b) = c , c ne 0. Then the roots of the equation (x - alpha ) x - beta) + c = 0 are :

Let alpha,beta,gamma be the roots of (x-a) (x-b) (x-c) = d, d != 0 , then the roots of the equation (x-alpha)(x-beta)(x-gamma) + d =0 are :

If alpha and beta are zeros of f(x) = 6x^(2) + x= 2 find the value fo (alpha)/(beta) +(beta)/(alpha) .

If f(x) = x^2 - 3x + 1 and f (2 alpha) = 2 x f(alpha) =

If alpha and beta are the roots of x^(2)-ax+b^(2)=0 , then alpha^(2) +beta^(2) is equal to_______

If alpha, beta are the roots of ax^(2) - 26x + c = 0 , then alpha^(3) beta^(3) + alpha^(2) beta^(3) + alpha^(3) beta^(2) equals :

Consider the equation 5 sin^2 x + 3 sin x cos x - 3 cos^2 x =2 .......... (i) sin^2 x - cos 2 x =2-sin 2 x ........... (ii) If alpha is a root (i) and beta is a root of (ii), then tan alpha + tan beta can be equal to

If alpha, beta are the roots of a x^(2)+b x+c=0 the equation whose roots are alpha+(1)/(beta) and beta+(1)/(alpha) is