Home
Class 12
MATHS
Let f(x) = x2 + b1x + c1. g(x) = x^2 + b...

Let `f(x) = x2 + b_1x + c_1. g(x) = x^2 + b_2x + c_2`. Real roots of `f(x) = 0` be `alpha, beta` and real roots of `g(x) = 0` be `alpha+gamma, beta+gamma`. Least values of `f(x)` be `- 1/4`Least value of `g(x)` occurs at `x=7/2`

A

`-1`

B

`-1/2`

C

`-1/3`

D

`-1/4`

Text Solution

Verified by Experts

The correct Answer is:
D

We have `(alpha-beta)=(alpha+k)-(beta+k)`
`implies(sqrt(b^(2)-4c))/1=(sqrt(b_(1)^(2)-4c_(1)))/1`
`impliesb^(2)-4c=b_(1)^(3)-4c_(1)`…i
Given least value of `f(x)=-1/4-((b^(2)-4c))/(4xx1)=-1/4`
`impliesb^(2)-4c=1`
`:.b^(2)-4c=1=b_(1)^(2)-4c_(1)` [from Eq. (i) ]..ii
Also given least value of `g(x)` occurs at `x=7/2`
`:.-(b_(1))/(2xx1)=7/2`
`:.b_(1)=-7`
Least value of `g(x)=-(b_(1)^(2)-4c_(1))/(4xx1)=-1/4` [from Eq. (ii)]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=x^(2)+bx+c and g(x)=x^(2)+b_(1)x+c_(1) Let the real roots of f(x)=0 be alpha, beta and real roots of g(x)=0 be alpha +k, beta+k fro same constant k . The least value fo f(x) is -1/4 and least value of g(x) occurs at x=7/2 The roots of g(x)=0 are

If alpha, beta are the rots of a x^(2)+b x+c=0 and alpha+h, beta+h are the roots of p x^(2)+q x+r=0 then h=

If alpha and beta are the roots of x^(2)+x+1=0 , then alpha^(16)+beta^(16)=

If alpha , beta are the roots of the equation : x^(2) + x sqrt(alpha) + beta = 0 , then the values of alpha and beta are :

If alpha, beta are the roots of 4 x^(2)-16 x+c=0 , c >0 such that 1

If alpha,beta and gamma are roots of x^(3) -2x+1=0,then the value of Sigma((1)/(alpha+beta-gamma)) is

Let f(x) = int_1^x sqrt(2 - t^2) dt . Then the real roots of the equation x^2 - f(x) = 0 are:

If alpha and beta are roots of the equation x^(2) + x + 1 = 0, then alpha^(2) + beta^(2) is

Let f(x) = int_1^x sqrt(2 - t^2)dt . Then the real roots of the equation x^2 - f' (x) = 0 are :

If f(x) =x^(2) +1, g(x) = x^(2) - 5x+6 , find f+g, f-g, f/g .