Home
Class 12
MATHS
Let r,s and t be the roots of the equati...

Let `r,s` and `t` be the roots of the equation `8x^(3)+1001x+2008=0`. If `99lamda=(r+s)^(3)+(s+t)^(3)+(t+r)^(3)`, the value of `[lamda]` (where [.] denotes the greatest integer function) is ____

Text Solution

Verified by Experts

The correct Answer is:
7

We have `4+s+t=0` ……………i
`rs+st+tr=1001/8`………ii
and `rst=-2008/8=-251` ……..iii
Now `(r+s)^(3)+(s+t)^(3)+(t+r)^(3)=(-t)^(3)+(-r)^(3)+(-s)^(3)`
`[:' r+s=t=0]`
`=(t^(3)+r^(3)+s^(3))=-3rst[ :' r+s+t=0]`
`=-(-251)=753`
Now `99lamda=(r+s)^(3)+(s+t)^(3)+(t+r)^(3)=753`
`:.lamda=753/99=7.6`
`:.[lamda]=7`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let r ,s and t be the roots of equation 8x^3+1001 x+2008=0. Then find the value of (r+s)^3 +(s+t)^3+(t+r)^3 .

If [sin x]+[sqrt(2) cos x]=-3 , x in [0,2pi] , (where ,[.] denotes th greatest integer function ), then

Solve the equation x^(3)-[x]=3 , where [x] denotes the greatest integer less than or equal to x .

Find the value of t which satisfies (t-[|sin x|])! = 3!5!7! w h e r e[dot] denotes the greatest integer function.

If product of the real roots of the equation, x^(2)-ax+30=2sqrt((x^(2)-ax+45)),agt0 is lamda minimum value of sum of roots of the equation is mu . The value of (mu) (where (.) denotes the least integer function) is

If 0 lt x lt 1000 and [x/2]+[x/3]+[x/5]=31/30x , (where [.] denotes the greatest integer function then number of possible values of x.

If f : R rarr R is a function defined by : f(x) = [x] c cos ((2x - 1)/(2))pi, where [x] denotes the greatest integer function, then 'f' is :

Let alpha,beta be the roots of the equation x^(2)-px+r=0 and (alpha)/(2),2beta be the roots of the equation x^(2)-qx+r=0 then the value of r is

Let alpha, beta be the roots of the equation x^(2) - px + r = 0 and (alpha)/(2) , 2 beta be the roots of the equation x^(2) - qx + r = 0 . Then the value of r is :

Let [cdot] denote the greatest integer function, then the value of int_(0)^(1.5)x [x^2] dx is :