Home
Class 12
MATHS
If alpha,beta are the roots of x^(2)-3 ...

If `alpha,beta` are the roots of `x^(2)-3 x+5=0` and `gamma, delta` are the roots of `x^(2)+5 x-3=0`, then the equation whose roots are `alpha gamma+beta delta` and `alpha delta+beta gamma` is

Text Solution

Verified by Experts

The correct Answer is:
`a^(2)l^(2)x^(2)-ablmx+(b^(2)-2ac) Ink +(m^(2)-2In)ac=0`

We have `alpha + beta=-b/a`
`alpha beta=c/aimpliesgamma + delta =-m/l` and `gamma delta=n/l`
Now sum of the roots
`=(alpha gamma+beta delta)+(alpha delta +beta gamma)=(alpha +beta)gamma +(alpha +beta) delta`
`=(alpha +beta)(gamma+delta)`
`=(-b/a)(-m/l)=(mbl)/(al)`
and product of the roots
`=(alpha gamma+beta delta)(alpha delta+beta gamma)`
`=(alpha^(2)+beta^(2))gamma delta +alpha beta (gamma^(2)+delta^(2))`
`{(alpha +beta)-2alpha beta} gamma beta+alpa beta {(gamma +delta)^(2)-2 gama delta}`
`={(-b/a)^(2)-(2c)/a}b/l+c/a{(m/l)^(2)-(2n)/l}`
`={(b^(2)-2ac)/(a^(2))}b/l+c/a{(m^(2)-2nl)/(l^(2))}=((b^(2)-2ac)ln+(m^(2)-2nl)ac)/(a^(2)l^(2))`
`:.` Required equation is
`x^(2)-((mb)/(al))x+((b^(2)-2ac)ln+(m^(2)-2nl)ac)/(a^(2)+l^(2))=0`
`impliesa^(2)l^(2)x^(2)-mbalc+(b^(2)-2ac)ln+(m^(2)-2nl)ac=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha , beta are the roots of 2 x^(2)-x+7=0 then the equation whose roots are 2-3 alpha and 2-3 beta is

If alpha and beta are the rotos of a x^(2)+b x+c=0 the equation whose roots are 2+alpha and 2+beta is

If alpha, beta are the roots of x^(2)-3x+1=0 , then the equation whose roots are (1/(alpha-2),1/(beta-2)) is

Let alpha, beta be the roots of x^(2)+x+1=0 . The equation whose roots are alpha^(25) and beta^(22) .

If alpha and beta are the roots of x^(2) + qx + 1 = 0 and gamma, delta the roots of x^(2) + qx + 1 = 0 , then the value of (alpha - gamma ) (beta - gamma ) (a + delta ) beta + delta) is :

If alpha, beta are the roots of the equation x^(2)+x+1=0 , then the equation whose roots are (alpha)/(beta) and (beta)/(alpha) is

If alpha, beta are the roots of a x^(2)+b x+c=0 the equation whose roots are alpha+(1)/(beta) and beta+(1)/(alpha) is

If alpha and beta are the roots of the equation 2x^2-3x + 4=0 , then the equation whose roots are alpha^2 and beta^2, is

If alpha, beta are the roots of a x^(2)+b x+c=0 the equation whose roots are (alpha+beta)^(-1) , alpha^(-1)+ beta^(-1) is

Let alpha, beta be the roots of x^(2)+a x+1=0 . Then the equation whose roots are – (alpha+(1)/(beta)) and -(beta+(1)/(alpha))