Home
Class 12
MATHS
Let a,b,c be the sides of a triangle n...

Let a,b,c be the sides of a triangle no two of them are equal and `lambda in R` if the roots of the equation `x^(2)+2(a+b+c)+3lambda`(ab+bc+ca=0) are real then

A

`lamda lt 4/3`

B

`lamda lt 5/3.`

C

`l epsilon(1/3,5/3)`

D

`lamda epsilon (4/3,5/3)`

Text Solution

Verified by Experts

The correct Answer is:
A

`Dge0`
`4(a+b+c)^(2)-12lamda(ab+bc+ca)ge0`
`(a^(2)+b^(2)+c^(2))-(3lamda-2)(ab+bc+ca)ge0`
`:.(3lamda-2)le((a^(2)+b^(2)+c^(2)))/((ab+bc+ca))`
Since `|a-b|ltc`
`impliesa^(2)+b^(2)-2abltc^(2)`……i
`|b-c|lta`
`impliesb^(2)+c^(2)-2bclta^(2)`.......ii
`|c-a|ltb`
`impliesc^(2)+a^(2)-2caltb^(2)`..........iii
From Eqs i, ii and iii we get
`(a^(2)+b^(2)+c^(2))/(ab+bc+ca)lt2`............iv
FromEqs i and iv we get
`3lamda-2lt2implieslamdalt4/3`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let a, b,c be sides of a triangle. No two of them are equal and lambda in R. If the roots of the equation x^(2) + 2 (a + b + c) x + 3 lambda (ab + bc + ca ) = 0 are real , then :

If the roots of the equation (a-b)x^(2)+(b-c)x+(c-a)=0 are equal, then

If a, b, c are real and a!=b , then the roots of the equation, 2(a-b)x^2-11(a + b + c) x-3(a-b) = 0 are :

If a,b,c are positive real numbers, then the roots of the equation ax^(2) + bx + c =0

If the roots of the equation : (b-c)x^(2) + (c-a) x + ( a-b) = 0 are equal, then a,b,c are in :

If the roots of the equations (b-c) x^(2) + (c-a) x+( a-b) =0 are equal , then prove that 2b=a+c

if one of the root of the equation a(b-c)x^(2)+b(c-a)x+c(a-b)=0 is 1,the other root is

If one of the roots of the equation a(b-c)x^(2)+b(c-a)x+c(a-b)=0 is 1, the other root is

If the ratio of the roots of the equation a x^(2)+b x+c=0 is equal to the ratio of the roots of the equation x^(2)+x+1=0 , then a, b , c are in