Home
Class 12
MATHS
Let p and q be real number such that ...

Let p and q be real number such that `p ne 0 , p^(3) ne q` and `p^(3) ne -q`. If `alpha` and `beta` non- zero complex number satifying `alpha+ beta= -p` and `alpha^(3) + beta^(3) =q` then a quadratic equation having `(alpha)/(beta)` and `(beta) /(alpha)` as its roots is :

A

`(p^(3)+q)x^(2)-(p^(3)+2q)x+(p^(3)+q)=0`

B

`(p^(3)+q)x^(2)-(p^(3)-2q)x+(p^(3)+q)=0`

C

`(p^(3)-q)x^(2)-(5p^(3)-2q)x+(p^(3)-q)=0`

D

`(p^(3)-q)x^(2)(5p^(3)+2q)x+(p^(3)-q)=0`

Text Solution

Verified by Experts

The correct Answer is:
C

`(alpha)/(beta)+(beta)/(alpha)=(alpha^(2)+beta^(2))/(alpha beta)=((alpha +beta)^(2)-2 alpha beta)/(alpha beta)`……….i
and given `alpha^(3)+beta^(3)=q, alpha + beta=-p`
`implies(alpha+beta^(3)=q,alpha + beta=-p`
`=(alpha +beta)^(3)-3alpha beta(alpha +beta)=q`
`implies-p^(3)+3p alpha beta=q` ltbr or `alpha beta=(q+p^(3))/(3p)`
`:.` From eq. (i) we get
`(alpha)/(beta)+(beta)/(alpha)=(p^(2)-(2(q+p^(3)))/(3p)/(((q+p^(3)))/(3p))=(p^(3)-2q)/((q+p^(3)))`
and product of the roots `=(alpha)/(beta). (beta)/(alpha)=1`
`:.` Required equation is `x^(2)-((p^(3)-2q)/(q+p^(3)))x+q=0`
or `(q+p^(3))x^(2)-(p^(3)-2q)x+(q+p^(3))=0`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let p and q be real numbers such that p ne 0 , p^(3) ne q and p^(3) ne - q. if alpha and beta are non-zero complex numbers satisfying alpha + beta = -p and alpha^(3) + beta^(3) = q, then a quadratic equation having (alpha)/(beta ) and (beta)/(alpha) as its roots is :

If alpha ne beta and alpha^(2) = 5 alpha - 3, beta^(2) = 5 beta - 3 , then the equation having alpha//beta and beta/alpha as its roots, is :

If alpha, beta are the roots of the equation x^(2)+x+1=0 , then the equation whose roots are (alpha)/(beta) and (beta)/(alpha) is

Let alpha, beta be the roots of x^(2)+a x+1=0 . Then the equation whose roots are – (alpha+(1)/(beta)) and -(beta+(1)/(alpha))

If alpha, beta are the roots of a x^(2)+b x+c=0 the equation whose roots are alpha+(1)/(beta) and beta+(1)/(alpha) is

If alpha and beta are zeros of polynomial 2x^(2) + 7 x + 5 " find " alpha + beta + alpha beta .

If alpha and beta two different complex numbers with |beta|=1 , then |(beta-alpha)/(1-bar(alpha)beta)| is equal to

If alpha and beta are different complex numbers with |beta|=1 , then find |(beta -alpha)/(1-baralphabeta)|

If sin(alpha + beta) = 1 , sin(alpha - beta) = 1/2 , then : tan(alpha + 2beta)tan(2alpha + beta) is equal to :

If alpha and beta are non real cube roots of unity then alpha beta+alpha^(5)+beta^(5)=