Home
Class 12
MATHS
x^(2) + 3x +9=0...

`x^(2) + 3x +9=0`

A

`(-2,-1)`

B

`(-oo,-2)uu(2,oo)`

C

`(-1,0)uu(0,1)`

D

`(1,2)`

Text Solution

Verified by Experts

The correct Answer is:
B

`:'x-[x]={x}` [fractional part of `x`]
For no integral solution `{x}!=0`
`:.a!=0`……….i
The given equation can be written as
`3{x}^(2)-2{x}-a^(2)=0`
`implies{x}=(2+sqrt((4+12a^(2)))/6=(1+sqrt((1+3a^(2)))/3[:'0lt{x}lt1]`
`implies0lt(1+sqrt((1+3a^(2)))/3lt1impliessqrt(1+3a^(2)))lt2`
`impliesa^(2)lt1=-1ltalt1` ..........ii
From Eqs i and ii we get
`a epsilon(-1,0)uu(0,1)`
Promotional Banner

Similar Questions

Explore conceptually related problems

x^(2) + 3x + 5=0

The nature of the roots of the equations x^(2) - 6x + 9=0 is :

If the roots of the equation x^(3) + ax^(2) + bx + c = 0 are in A.P., 2a^(3) - 9ab =

The length of the tangent from the point (1, -4) to the circle 2x^(2) + 2y^(2) - 3x + 7y + 9 = 0 is

If x^(2)+4ax+3=0 and 2x^(2)+3ax-9=0 have a common root, the values of 'a' are

The centre of the hyperbola 2 x^(2)+5 x y+3 y^(2)+3 x+4 y+9=0 is

If f(x) = kx^(3) - 9x^(2) +9x + 3 is increasing on R then

If y = (3x^(2) - 9x + 5)^(9) find (dy)/(dx) .

What should be multiplied with 2x^(2) +3x - 4 to get 4x^(4) - 9x^(2) + 24 x - 16 ?

The vertex of the parabola x^(2)+12 x-9 y=0 is