Home
Class 12
MATHS
Find the sum of all real values of X sat...

Find the sum of all real values of X satisfying the equation `(x^2-5x+5)^(x^2 + 4x -60) = 1` .

A

6

B

5

C

3

D

`-4`

Text Solution

Verified by Experts

The correct Answer is:
C

`(x^(2)-5x+5)^(x^(2)+4x-60)=1`
Case I
`x^(2)-5x+5=1` and `x^(2)+4x-60` can be any real number
`impliesx=1,4`
Case II
`x^(2)-5x+c=-1` and `x^(2)+4x-60` has to be an even number ltbr gt`impliesx=2,3`
For `x=2,3`
For `x=3, x^(2)+4x-60` is odd `:.!=3`
Hence `x=2`
Case III `x^(2)-5x+5` can be any real number and
`x^(2)+4x-60=0`
`impliesx=-10,6`
`implies` Sum of all values o `x=1+4+2-10+6=3`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the number of real values of x satisfying the equation. log_(2)(4^(x+1)+4)*log_(2)(4^(x)+1)=log_(1//sqrt(2)) sqrt((1)/(8))

Number of real values of x satisfying the equation log_(x^2+6x+8)(log_(2x^2+2x+3)(x^2-2x))=0 is equal to

If the sum of all value of x satisfying the system of equations tan x + tan y+ tan x* tan y=5 sin (x +y)=4 cos x * cos y is (k pi )/2 , where x in (0, (pi)/(2)) then find the values of k .

The number of real solution of the equation x^(2)=1-|x-5| is:

The sum of values of x satisfying the equation (31+8sqrt(15))^(x^(2)-3)+1=(32+8sqrt(15))^(x^(2)-3) is

The sum of the real roots of the equation x^(2)+|x|-12=0 is

Value of discriminant factor in the equations 2x^(2) = 5x is :

Value of x, satisfying x^2 + 2x = -1 is :

If A satisfies the equation x^3-5x^2+4x+lambda=0 , then A^(-1) exists if

The value of x satisfying x^2 +5x + 6 = 0 is