Home
Class 12
MATHS
Let -pi/6 < theta < -pi/12. Suppose alph...

Let `-pi/6 < theta < -pi/12`. Suppose `alpha_1 and beta_1`, are the roots of the equation `x^2-2xsectheta + 1=0` and `alpha_2 and beta_2` are the roots of the equation `x^2 + 2xtantheta-1=0`. If `alpha_1 > beta_1` and `alpha_2 >beta_2`, then `alpha_1 + beta_2` equals:

A

(a) `2(sec theta-tan theta)`

B

(b) `2 sec theta`

C

(c) `-2 tan theta`

D

(d) `0`

Text Solution

Verified by Experts

The correct Answer is:
A

`:'x^(2)-2x sec theta a+1=0impliesx -sec theta +- tan theta`
and `-(pi)/6 lt theta lt -(pi)/12`
`impliessec (-(pi)/6)gtsec theta gt sec (-(pi)/12)`
or `sec((pi)/6)gtsec theta gt sec ((pi)/12)`
and `tan(-(pi)/6)lt tan theta lt tan(-(pi)/12)`
`implies-tan ((pi)/6)lt tan theta lt -tan((pi)/12)`
or `tan ((pi)/6)gt-tan theta gt tan ((pi)/12)`
`:'alpha_(1),beta_(1)`
`:'alpha_(1),beta_(1)` are roots of `x^(2)-2x sec theta=1=0` and `alpha_(1)gtbeta_(1)`
`:. alpha_(1)=sec theta-tan theta` and `beta_(1)=sec theta+tan theta`
`impliesalpha_(2),beta_(2)` are roots of `x^(2)+2xtan theta-1=0`
and `alpha_(2)gtbeta_(2)`
`:.alpha_(2)=-tan theta+sec theta`
and `beta_(2)=-tan theta-sec theta`
Hence `alpha_(1)+beta_(2)=-2tan theta`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let the line (x-2)/3=(y-1)/(-5)=(z+2)/2 lie in the plane x+3y-alpha z+beta =0 . Then (alpha,beta) equals :

If alpha, beta are the roots of ax^(2) - 26x + c = 0 , then alpha^(3) beta^(3) + alpha^(2) beta^(3) + alpha^(3) beta^(2) equals :

If alpha+beta+gamma=2 pi, then

If sin(alpha + beta) = 1 , sin(alpha - beta) = 1/2 , then : tan(alpha + 2beta)tan(2alpha + beta) is equal to :

Evaluate {:|( cos alpha cos beta , cos alpha sin beta , -sin alpha ),( -sin beta , cos beta, 0),( sin alpha cos beta, sin alpha sin beta, cos alpha ) |:} =1

If "cot"(alpha+beta=0, then "sin"(alpha+2beta) can be

If alpha and beta be between 0 and (pi)/(2) and if cos (alpha+beta)=(12)/(13) and sin (alpha-beta)=(3)/(5), then sin 2 alpha is equal to

If alpha ne beta and alpha^(2) = 5 alpha - 3, beta^(2) = 5 beta - 3 , then the equation having alpha//beta and beta/alpha as its roots, is :

IF {:|(sinalpha,cosbeta),(cos alpha,sin beta)|=1/2 , where alpha and beta are acute angles then write the value of alpha + beta.

If alpha and beta be the roots of the equation x^(2) + 7x + 12 = 0 . Then equation whose roots are (alpha + beta)^(2) and (alpha - beta)^(2) is :