Home
Class 12
MATHS
If, for a positive integer n , the quadr...

If, for a positive integer `n ,` the quadratic equation, `x(x+1)+(x-1)(x+2)++(x+ n-1)(x+n)=10 n` has two consecutive integral solutions, then `n` is equal to : ` (1) 10` (2) `11` (3) `12` (4) `9`

A

(a) `11`

B

(b) `12`

C

(c) `9`

D

(d) `10`

Text Solution

Verified by Experts

The correct Answer is:
A

`:'x(x+1)+(x+1)(x+2)+……..+(x+bar(n-1))(x+n)=10n`
`impliesnx^(2)+x(1+3+5+….+(2n-1))+(1.2+2.3)+……..+(n-1).n)=10n`
or `nx^(2)+n^(2)x+1/3(n-1)n(n+1)=10n`
or `3x^(2)+3nx+(n^(2)-1)=30( :' n!=0`
or `3x^(2)+3nx+(n^(2)-31)=0`
`:'|alpha-beta|=1`
or `(alpha-beta)^(2)=1`
or `D/(a^(2))=1`
or `D=a^(2)`
or `9n^(2)-12.(n^(2)-31)=9`
or `n^(2)=121`
`:.n=11`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the positve integer n for which the quadratic equation sum_(k=1)^n(x+k-1)(x+k)=10n has solutions alpha and alpha+1 for some alpha is

For a positive integer n, let a(n)=1+(1)/(2)+(1)/(3)+(1)/(4)+ . . .+(1)/(2^(n)-1) Then:

If m and n are the roots of the quadratic equations x^(2)- 6x+ 2 =0 , then the value of (m+ n )^(2) is

int (dx)/(x(x^(n)+1)) is equal to :

If f'(x)=(x-a)^(2n)(x-b)^(2p+1) , when n and p are positive integers, then :

If m and n are the roots of the quadratic equations x^(2) - 3x+1 =0 , then find the value of (m)/( n) + ( n)/(m)

In the expansion of (x^(2)+(2)/(x))^(n) for positive integer n has a term independent of x, then n is

If X={4^n -3n-1 , n in N} and Y={9(n-1), n in N} , where N is the set of natural numbers, then X uu Y is equal to :

sin (n +1) x sin (n +2) x + cos (n +1) x cos (n +2) x = cos x

If f(x) = (a-x^n)^1/n, a gt 0 , n is a postive integer then f[f(x)]=