Home
Class 12
MATHS
Evaluate sum(r=1)^(n)rxxr!...

Evaluate `sum_(r=1)^(n)rxxr!`

Text Solution

Verified by Experts

We have, `underset(r=1)overset(n)(sum)rxxr!=underset(r=1)overset(n)(sum){(r+1)-1}r!=underset(r=1)overset(n)(sum)(r+1)!-r!`
`=(n+1)!-1!`
[put r=n in (r+1)! Annd r=1 is r!]
`=(n+1)!-1`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sum_(r=1)^(n)(nP_(r))/(r!)=

Evaluate sum_(m=1)^(oo)sum_(n=1)^(oo)(m^(2)n)/(3^(m)(n*3^(m)+m*3^(n))) .

Evaluate S=sum_(n=0)^n(2^n)/((a^(2^n)+1) (where a>1) .

Find he value of sum_(r=1)^(4n+7)\ i^r where, i=sqrt(- 1).

The value of sum_(r=1)^(n) log ((a^(r ))/( b^(r-1))) is :

The value of sum_(r=1)^(10)r(n C_(r))/(n C_(r-1)) =

Find the remainder when sum_(r=1)^(n)r! is divided by 15 , if n ge5 .

Sum of the series sum_(r=1)^(n) (r^(2)+1)r! is

If a_(1)=2 and a_(n)=2a_(n-1)+5 for ngt1 , the value of sum_(r=2)^(5)a_(r) is

If sum_(i=1)^(n) cos theta_(i)=n , then the value of sum_(i=1)^(n) sin theta_(i) .