Home
Class 12
MATHS
Prove that 1* ""^(1)P(1)+2* ""^(2)P(2)+3...

Prove that `1* ""^(1)P_(1)+2* ""^(2)P_(2)+3* ""^(3)P_(3) + … +n* ""^(n)P_(n)=""^(n+1)P_(n+1)-1`

Text Solution

Verified by Experts

`LHS=.^(1)P_(1)+2*.^(2)P_(2)+3*.^(3)P_(3)+ . . .+n*.^(n)P_(n)`
`=underset(r=1)overset(n)(sum)r*.^(r)P_(r)=underset(r=1)overset(n)(sum){(r+1)-1}*.^(r)P_(r)`
`=underset(r=1)overset(n)(sum){(r+1)*.^(r)P_(r)-.^(r)P_(r))}`
`=underset(r=1)overset(n)(sum)(.^(r+1)P_(r+1)-.^(r)P_(r))` [from note (iii)]
`=.^(n+1)P_(n+1)-.^(1)P_(1)=.^(n+1)P_(n+1)-1`
`=RHS`
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that 1^(2) +2^(2)+ ….+n^(2) gt (n^(3))/(3) , n in N

Find n if ""^(n-1)P_(3) : ""^(n)P_(4)=1:9 .

Solve the equation 3 ^(x+1)C_(2)+ ^(2)P_(2)x=4^(x)P_(2),x in N .

Find 'n' if (""^(n)P_(4))/(""^(n-1)P_(4))= (5/3) ?

if .^(m+n) P_(2)=56 and .^(m-n)P_(3)=24 , then (.^(m)P_(3))/(.^(n)P_(2)) equals

If ""^(n) P_(4)=20(""^(n)P_(2)) then find the value of n.

Find the value of n such that ""^(n)P_(5)=42""^(n)P_(3), n gt 4

if .^(2n+1)P_(n-1):^(2n-1)P_(n)=7:10 , then .^(n)P_(3) equals

If .^(n)P_(5)=20 .^(n)P_(3) , find the value of n.

If .^(n+5)P_(n+1)=(11(n-1))/2 .^(n+3)P_n , find n