Home
Class 12
MATHS
Prove that ((n),(r))+2((n),(r-1))+((n)...

Prove that
` ((n),(r))+2((n),(r-1))+((n),(r-2))=((n+2),(r))`

Text Solution

Verified by Experts

`therefore((n),(r))=.^(n)C_(r)`
`thereforeLHS=((n),(r))+2((n),(r-1))+((n),(r-2))`
`=.^(n)C_(r)+2.^(n)C_(r-1)+.^(n)C_(r-2)`
`=(.^(n)C_(r)+.^(n)C_(r-1))+(.^(n)C_(r-1)+.^(n)C_(r-2))`
`=.^(n+1)C_(r)+.^(n+1)C_(r-1)=.^(n+2)C_(r)`
`=((n+2),(r))=RHS`
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that ""^(n)C_(r)+""^(n)C_(r-1)=""^(n+1)C_(r) .

For 2le rlen,{:((n),(r)):}+2({:(n),(r-1):})({:(n),(r-2):})=

If C_(r) stands for ""^(n)C_(r) and sum_(r=1)^(n)(r*C_(r))/(C_(r-1))=210 , then n equals:

If A_(1), A_(3), ... , A_(2n-1) are n skew-symmetric matrices of same order, then B =sum_(r=1)^(n) (2r-1) (A_(2r-1))^(2r-1) will be

Prove that sum_(r=0)^n^n C_rsinr xcos(n-r)x=2^(n-1)sin(n x)dot

The value of sum_(r=1)^(10)r(n C_(r))/(n C_(r-1)) =

Evaluate (n!)/(r!(n-r)!) , when n = 5, r = 2.

lim_(n rarr oo) sum_(r=0)^(n-1) 1/(sqrt(n^(2)-r^(2))) =

If (1+x)^(n)=sum_(r=0)^(n)a_(r)x^(r) and b_(r)=1+(a_(r))/(a_(r-1)), and prod_(r=1)^(n)b_(r)=((101)^(100))/(100!) then n equals: