Home
Class 12
MATHS
Evaluate (47)C(4)+sum(j=0)^(3)""^(50-j...

Evaluate
`(47)C_(4)+sum_(j=0)^(3)""^(50-j)C_(3)+sum_(k=0)^(5) ""^(56-k)C_(53-k)`.

Text Solution

Verified by Experts

We have, `.^(47)C_(4)+underset(j=0)overset(3)(sum).^(50-j)C_(3)+underset(k=0)overset(5)(sum).^(56-k)C_(53-k)`
`=.^(47)C_(4)+underset(j=0)overset(3)(sum).^(50-j)C_(3)+underset(k=0)overset(5)(.^(56)-k)C_(3)" "[because.^(n)C_(r)=.^(n)C_(n-r)]`
`=.^(47)C_(4)+(.^(50)C_(3)+.^(49)C_(3)+.^(48)C_(3)+.^(47)C_(3))`
`+(.^(56)C_(3)+.^(55)C_(3)+.^(54)C_(3)+.^(53)C_(3)+.^(52)C_(3)+.^(51)C_(3))`
`=.^(47)C_(4)+.^(47)C_(3)+.^(48)C_(3)+.^(49)C_(3)+.^(50)C_(3)+.^(51)C_(3)+.^(52)C_(3)+.^(52)C_(3)+.^(54)C_(3)+.^(55)C_(3)+.^(56)C_(3)`
`=(.^(47)C_(4)+.^(47)C_(3))+.^(48)C_(3)+.^(49)C_(3)+.^(50)C_(3)+.^(51)C_(3)+.^(52)C_(3)+.^(53)C_(3)+.^(54)C_(3)+.^(55)C_(3)+.^(56)C_(3)`
`=.^(48)C_(4)+.^(48)C_(3)+.^(49)C_(3)+.^(50)C_(3)+.^(51)C_(3)+ . . .+.^(56)C_(3)`
`=.^(49)C_(4)+.^(49)C_(3)+.^(50)C_(3)+ . . .+.^(56)C_(3)`
`=.^(56)C_(4)+.^(56)C_(3)=.^(57)C_(4)`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of ""^(50)C_4+sum_(r=1)^6""^(56-r)C_3 is

Evaluate sum_(k=1)^11(2+3^k)

The value of sum_(i=0)^oosum_(j=0)^oosum_(k=0)^oo1/(3^i3^j3^k) is

sum_(i=1)^(n) sum_(j=1)^(i)sum_(k=1)^(j) 1 equals :

The value of the expression : ""^(47)C_4+sum_(j=1)^5""^(52-j)C_3 is equal to :

If n is a positive integer and C_(k)=""^(n)C_(k) , then the value of sum_(k=1)^(n)k^(3)((C_(k))/(C_(k-1)))^(2) equals:

If sum_(r=1)^(n) t_(r ) = sum_(k=1)^(n) sum_(j=1)^(k) sum_(i=1)^(j) 2 , then sum_(r=1)^(n) (1)/( t_(r )) equals :

sum_(k=1)^(5) (1^(3)+2^(3)+.. ..+k^(3))/(1+3+5+.. ..+(2 k-1))=

The coefficient of x^(53) in the expansion of: sum_(m=0)^(100)""^(100)C_(m)(x-3)^(100-m)2^m is:

The coefficient of x^(53) is sum_(r=0)^(100) 100 C_(r).(x-3)^(100-r). 2^(r) is