Home
Class 12
MATHS
Find the sum of the series (1^(2)+1)1!...

Find the sum of the series
`(1^(2)+1)1!+(2^(2)+1)2!+(3^(2)+1)3!+ . .+(n^(2)+1)n!`.

Text Solution

Verified by Experts

Let `S_(n)=(1^(2)+1)1!+(2^(2)+1)2!+(3^(2)+1)3!+ . .+(n^(2)+1)n!`
`therefore` nth term `T_(n)=(n^(2)+1)n!`
`={(n+1)(n+2)-3(n+1)+2}n!`
`T_(n)=(n+2)!-3(n+1)!+2n!`
Putting `n=1,2,3,4, . .,n`
then `T_(1)=3!-3*2!+2*1!`
`T_(2)=4!-3*3!+2*2!`
`T_(3)+%!-3*4!+2*3!`
`T_(4)=6!-3*5!+2*4!`
. . . . . . .
. . . . . . .
`T_(n-1)=(n+1)!-3n!+2(n-1)!`
`T_(n)=(n+2)!-3(n+1)!+2n!`
`therefore S_(n)=T_(1)+T_(2)+T_(3)+ . .. +T_(n)`
`=(n+2)!-2(n+1)!` [the rest cancel out]
`=(n+2)(n+1)!-2(n+1)!`
`=(n+1)!(N=2-2)`
`=n(n+1)!`
Promotional Banner

Similar Questions

Explore conceptually related problems

Sum of the series sum_(r=1)^(n) (r^(2)+1)r! is

Find the sum to n terms series 1^(2) + (1^(2) + 2^(2)) (1^(2) + 2^(2) + 3^(2)) + . . . . .

Find the sum to n terms of the series 1^(2)+(1^(2)+2^(2))+(1^(2)+2^(2)+3^(2))+.....

Find the sum to n terms of the series . 3 xx 1^(2) + 5 xx 2^(2) + 7 xx 3^(2) + . . . . . .

The sum of 1^(st) n terms of the series (1^(2))/(1) + (1^(2) + 2^(2))/(1 + 2) + (1^(2) + 2^(2) + 3^(2))/(1 + 2 + 3) + ..

Find the sum to n terms of the series (1)/(1xx2) +(1)/(2xx3)+(1)/(3xx4) + . . . . . .

Sum of the n terms of the series 1 . 2^(2)+2 . 3^(2)+3 . 4^(2)+..

The sum of first n terms of the series 1^(2) + 2.2^(2) +3^(2) + 2. 4^(2) + 5^(2) + 2. 6^(2) + "........." is ( n ( n + 1)^(2))/( 2) when n is even. When, n is odd, the sum is :

Find the sum to n terms of the series 1/(1+1^(2)+1^(4))+2/(1+2^(2)+2^(4))+3/(1+3^(2)+3^(4))+… .

Find the sum to 'n' terms of the series 1^(2)+3^(2)+5^(2)+.....+