Home
Class 12
MATHS
Let n and k be positive integers such th...

Let n and k be positive integers such that n ge K(K + 1)/2 . Find the number of solutions (`x_(1) , x_(2) , x_(3),………., x_(k) `) `x_(1) ge 1, x_(2) ge 2, ……….. X_(k) ge k` , all integers satisfying the condition `x_(1) + x_(2) + x_(3) + ………. X_(k) = n`.

Text Solution

Verified by Experts

We have, `x_(1)+x_(2)+ . . +x_(k)=n` . . . (i)
Now, let `y_(1)=x_(1)-1,y_(2)=x_(2)-2, . . ,y_(k)=x_(k)-k`
`thereforey_(1)ge0,y_(2)ge0, . . ,y_(k)ge0`
On substituting the values `x_(1),x_(2), . . ,x_(k)` in terms of `y_(1),y_(2), . . ,y_(k)`
In Eq. (i), we get
`y_(1)+1+y_(2)+2+ . . +y_(k)+k=n`
`impliesy_(1)+y_(2)+ . . +y_(k)=n-(1+2+3+ . .+k)`
`thereforey_(1)+y_(2)+ . . +y_(k)=n-(k(k+1))/(2)=A` (say) . . . (ii)
The number of non-negative integral solutions of the Eq.
(ii) is
`=.^(k+A-1)C_(A)=((k+A-1)!)/(A!(k-1)!)`
where, `A=n-(k+1))/(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

A set of n values x_(1), x_(2), ….., x_(n) has standard deviation sigma . The standard deviation of n values : x_(1) + k, x_(2) + k, ……, x_(n) + k will be :

If x^(2) + 2x - 3 ge 0 and x^(2) - 2x - 3 ge 0 , then :

If cos x- sin x ge 1 and 0 le x le 2pi , then find the solution set for x .

Solution set of the inequation (x-4)/(x+1) ge 2 is

Three points P (h, k), Q(x_(1) , y_(1))" and " R (x_(2) , Y_(2)) lie on a line. Show that (h - x_(1)) (y_(2) - y_(1)) = (k - y_(1)) (x_(2) - x_(1)) .

Let y be an element of the set A={1,2,3,4,5,6,10,15,30} and x_(1) , x_(2) , x_(3) be integers such that x_(1)x_(2)x_(3)=y , then the number of positive integral solutions of x_(1)x_(2)x_(3)=y is

Find the value of k if x-1 is the factor of kx^(2)-3x+k

If n is a positive integer and C_(k)=""^(n)C_(k) , then the value of sum_(k=1)^(n)k^(3)((C_(k))/(C_(k-1)))^(2) equals:

Let x_(1),x_(2),x_(3), . . .,x_(k) be the divisors of positive integer ' n ' (including 1 and x ). If x_(1)+x_(2)+ . . .+x_(k)=75 , then sum_(i=1)^(k)(1)/(x_(i)) is equal to:

Let (1+x^(2))^(2)(1+x)^(n) = sum_(k=0)^(n+4) a_(k) x^(k) . If a_(1) , a_(2) , a_(3) are in A.P., then n=