Home
Class 12
MATHS
The value of the expression : ""^(47)...

The value of the expression :
`""^(47)C_4+sum_(j=1)^5""^(52-j)C_3` is equal to :

A

`.^(47)C_(6)`

B

`.^(52)C_(5)`

C

`.^(52)C_(4)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of ""^(50)C_4+sum_(r=1)^6""^(56-r)C_3 is

sum_(i=1)^(n) sum_(j=1)^(i)sum_(k=1)^(j) 1 equals :

Evaluate (47)C_(4)+sum_(j=0)^(3)""^(50-j)C_(3)+sum_(k=0)^(5) ""^(56-k)C_(53-k) .

If a,b,c are non-zero real numbers, then the minimum value of the expression ((a^(8)+4a^(4)+1)(b^(4)+3b^(2)+1)(c^(2)+2c+2))/(a^(4)b^(2)) equals

sum_(r=1)^(n)(sum_(p=0)^(r-1)""^(n)C_(r)""^(r)C_(p)2^(p)) is equal to:

Let A = [a_(ij)]_(3xx 3) If tr is arithmetic mean of elements of rth row and a_(ij )+ a_( jk) + a_(ki)=0 hold for all 1 le i, j, k le 3. sum_(1lei) sum_(jle3) a _(ij) is not equal to

The value of sum_(i=0)^oosum_(j=0)^oosum_(k=0)^oo1/(3^i3^j3^k) is

The value of sum_(r=1)^(10)r(n C_(r))/(n C_(r-1)) =

The scalar product of the vector vec(a) = hat(i) + hat(j) + hat(k) with a unit vector along the sum of vectors vec(b) = 2hat(i) + 4hat(j) - 5hat(k) and vec(c ) = lambda hat(i) + 2hat(j) + 3hat(k) is equal to one. Find the value of lambda and hence find the unit vector along vec(b) + vec(c ) .