Home
Class 12
MATHS
Let x(1),x(2),x(3), . . .,x(k) be the di...

Let `x_(1),x_(2),x_(3), . . .,x_(k)` be the divisors of positive integer '`n`' (including `1` and `x`). If `x_(1)+x_(2)+ . . .+x_(k)=75`, then `sum_(i=1)^(k)(1)/(x_(i))` is equal to:

A

(a) `(k^(2))/(75)`

B

(b) `(75)/(k)`

C

(c) `(n^(2))/(75)`

D

(d) `(75)/(n)`

Text Solution

Verified by Experts

The correct Answer is:
D

`underset(i=1)overset(k)(sum)(1)/(x_(i))=(1)/(x_(1))+(1)/(x_(2))+ . . .+(1)/(x_(k))=(underset(i=1)overset(k)(sum)x_(i))/(n)=(75)/(n)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If sum_(i=1)^(2 n) cos ^(-1) x_(i)=0, then sum_(i=1)^(2 pi) x_(i)=

If sum_(i=1)^(2n) sin^(-1) x_i =npi , then sum_(i=1)^(2n) x_i is equal to :

If sum_(i=1)^(2n) sin^(-1) x_i=npi , then sum_(i=1)^(2n) x_i equals :

If 1+x^(2)=sqrt(3)x , then sum_(n=1)^(24)(x^(n)-(1)/(x^(n)))^(2) equals

If x^(2)-x+1=0 then the value of sum_(n=1)^(5)(x^(n)+(1)/(x^(n)))^(2) is

If 3x=sec theta,(3)/(x) =tan theta then (x^(2)-(1)/(x^(2))) I equal to:

If f'(x)=(x-a)^(2n)(x-b)^(2p+1) , when n and p are positive integers, then :

If x_(1),x_(2),x_(3),.,x_(n) are the roots of the equation x^(n)+ax+b=0 , the value of (x_(1)-x_(2))(x_(1)-x_(3))(x_(1)-x_(4))…….(x_(1)-x_(n)) is

lim_(n rarr oo) 1/n^(3) sum_(k=1)^(n) k^(2)x =