Home
Class 12
MATHS
If 102!=2^(alpha)*3^(beta)*5^(gamma)*7^(...

If `102!``=2^(alpha)*3^(beta)*5^(gamma)*7^(delta)`…, then

A

(a) `alpha=98`

B

(b) `beta=2gamma+1`

C

(c) `alpha=2beta`

D

(d) `2gamma=3delta`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D

`becauseE_(2)(102!)=98,E_(3)(102!)=49`,
`E_(5)(102!)=24 and E_(7)(102!)=16`
`therefore alpha=98,beta=49,gamma=24 and delta=16`
Promotional Banner

Similar Questions

Explore conceptually related problems

If 15! =2^alpha* 3^beta*5^gamma*7^delta*11^theta * 13^phi , then the value of alpha-beta+gamma-delta+theta-phi is:

If alpha and beta are the roots of x^(2) + qx + 1 = 0 and gamma, delta the roots of x^(2) + qx + 1 = 0 , then the value of (alpha - gamma ) (beta - gamma ) (a + delta ) beta + delta) is :

If alpha,beta are the roots of x^2+p x+q=0a n dgamma,delta are the roots of x^2+r x+s=0, evaluate (alpha-gamma)(alpha-delta)(beta-gamma)(beta-delta) in lterms of p ,q ,r ,a n dsdot Deduce the condition that the equation has a common root.

If alpha, beta, gamma, delta are the roots of the equation x^(4)+Ax^(3)+Bx^(2)+Cx+D=0 such that alpha beta= gamma delta=k and A,B,C,D are the roots of x^(4)-2x^(3)+4x^(2)+6x-21=0 such that A+B=0 The value of (alpha+beta)(gamma+delta) is terms of B and k is

Suppose alpha, beta are roots of ax^(2)+bx+c=0 and gamma, delta are roots of Ax^(2)+Bx+C=0 . If alpha,beta,gamma,delta are in AP, then common difference of AP is

Suppose alpha, beta are roots of ax^(2)+bx+c=0 and gamma, delta are roots of Ax^(2)+Bx+C=0 . If alpha,beta,gamma,delta are in GP, then common ratio of GP is

Let alpha, beta be the roots of x^(2) -x + p = 0 and gamma , delta be the roots of x^(2) - 4x + q = 0 . If alpha, beta, gamma , delta are in G.P., then the integral value sof p and q respectively, are :

If alpha,beta be the roots of x^(2)+x+2=0 and gamma, delta be the roots of x^(2)+3 x+4=0 then (alpha+gamma)(alpha+delta)(beta+gamma)(beta+delta)=

alpha, beta and gamma are zeros of the cubic polynomial kx^(3) - 5x + 9 . If alpha^(3) + beta^(3) + gamma^(3) = 27 , value of k is