Home
Class 12
MATHS
The number of ways of choosing triplet (...

The number of ways of choosing triplet `(x , y ,z)` such that `zgeqmax{x, y}a n dx ,y ,z in {1,2, n ,n+1}` is a. `^ (n+1)C_3+^(n+2)C_3` b. `n(n+1)(2n+1)//6` c. `1^2+2^2+...+n^2` d. `2((^(n+2)C_3))_(-^(n+2))C_2`

A

`.^(n+1)C_(3)+.^(n+2)C_(3)`

B

`(n(n+1)(2n+1))/(6)`

C

`1^(2)+2^(2)+3^(2)+ . . .+n^(2)`

D

`2(.^(n+2)C_(3))-.^(n+1)C_(2)`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D

Triplets with
(i) x=y`ltz`
(ii) `x lt y lt z`
(iii) `y lt x lt z`
can be chosen in `.^(n+1)C_(2),.^(n+1)C_(3),.^(n+1)C_(3)` ways.
`therefore.^(n+1)C_(2)+.^(n+1)C_(3)+.^(n+1)C_(3)=.^(n+2)C_(3)+.^(n+1)C_(3)`
`=2(.^(n+2)C_(3))-.^(n+1)C_(2)`
`=(n(n-1)(2n+1))/(6)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If ""^(n)C_(8) = ""^(n)C_(2) Find ""^(n)C_(2) ?

The value of C_(1)+4C_(2)+7C_(3)+ . . .+(3n-2)C_(n) is

Determine n if ""^(2n)C_(3):""^(n)C_(3)=12:1 .

Determine n if ""^(2n)C_(3):""^(n)C_(3)=11:1

If n C_(1)+2. n C_(2)+..n. n C_(n) = 2 n^(2) , then n =

The number of positive integers satisfying the inequality C(n+1,n-2) - C(n+1,n-1)<=100 is

lim_(n rarr oo) (1^(2)+2^(2)+....+n^(2))/(2n^(3)+3n^(2)+4n+1 ) =

Prove that 1^(2) +2^(2)+ ….+n^(2) gt (n^(3))/(3) , n in N

(1+i)^(2 n)+(1-i)^(2 n), n in z is