Home
Class 12
MATHS
Let (S) denotes the number of ordered pa...

Let (S) denotes the number of ordered pairs (x,y) satisfying `(1)/(x)+(1)/(y)=(1)/(n),x,y,n in N`.
Q. `sum_(r=1)^(10)S(r)` equals

A

47

B

48

C

49

D

50

Text Solution

Verified by Experts

The correct Answer is:
B

`because1^(2)toS(1)=1,2^(2)toS(2)=3,3^(2)toS(3)=3`,
`4^(2) to 2^(4)to S(4)=5,5^(2)toS(5)=3,S(6)=9`
`S(7)=3,S(8)=7,S(9)=5 and S(10)=9` [from above]
`therefore underset(r=1)overset(10(sum)S(r)=S(1)+S(2)+S(3)+S(4)+S(5)+S(6)+S(7)+S(8)+S(9)+S(10)`
`=1+3+3+5+3+9+3+7+5+9=48`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let S(n) denotes the number of ordered pairs (x,y) satisfying 1/x+1/y=1/n,AA ,n in N , then find S(10) .

lim_(n to oo) 1/(n^2) sum_(r = 1)^(n) re^(r//n) equals :

Number of ordered pair (x,y) which satisfies the relation (x^(4)+1)/(8x^(2))=sin^(2)y*cos^(2) y , where y in [0,2pi]

If cos^(-1)((y)/(b))=nlog((x)/(n)) , then :

If cos^(-1)((y)/(b))=nlog((x)/(n)) , then

If f:RtoR satisfies f(x+y)=f(x)+f(y) for all x,yinRandf(1)=7 , then sum_(r=1)^(n)f(r) is :

If S_(n) denotes the sum of n terms of a G.P., whose common ratio is r, then (r-1) (dS_(n))/(dr) =

If sum_(r=1)^n t_r=n/8(n+1)(n+2)(n+3), then find sum_(r=1)^n1/(t_r)dot