Home
Class 12
MATHS
""^(n)C(n-r)+3.""^(n)C(n-r+1)+3.""^(n)C(...

`""^(n)C_(n-r)+3.""^(n)C_(n-r+1)+3.""^(n)C_(n-r+2)+""^(n)C_(n-r+3)=""^(x)C_(r)`

Text Solution

Verified by Experts

The correct Answer is:
`x=n+3`

We have, `.^(n)C_(n-r)+3^(n)C_(n-r+1)+3^(n)C_(n-r+2)+.^(n)C_(n-r+3)=.^(n)C_(r)`
`hArr (.^(n)C_(n-r)+.^(n)C_(n-r+1))+2(.^(n)C_(n-r+1)+.^(n)C_(n-r+2))+(.^(n)C_(n-r+2)+.^(n)C_(n-r+3))=.^(x)C_(r)`
`hArr.^(n+1)C_(n-r+1)+2^(2N=1)C_(n-r+2)+.^(n+1)C_(n-r+3)=.^(x)C_(r)`
`hArr(.^(n+1)C_(n-r+1)+.^(n+1)C_(n-r+2))+(.^(n+1)C_(n-r+2)+.^(n+1)C_(n-r+3))=.^(x)C_(r)`
`hArr.^(n+2)C_(n-r+2)+.^(n+2)C_(n-r+3)=.^(x)C_(r)`
`hArr .^(n+3)C_(n-r+3)=.^(x)C_(r)`
`hArr .^(n+r)C_(r)+.^(x)C_(r)" "[because .^(n)C_(r)=.^(n)C_(n-r)]`
Hence, `x=n+3`
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that ""^(n)C_(r)+""^(n)C_(r-1)=""^(n+1)C_(r) .

If ""^(n)C_(8) = ""^(n)C_(2) Find ""^(n)C_(2) ?

If m,n,r are positive integers such that rltm,n, then: ""^(m)C_(r)+""^(m)C_(r-1)""^(n)C_(1)+""^(m)C_(r-2)""^(n)C_(2)+ . . ..+""^(m)C_(1)""^(n)C_(r-1)+""^(n)C_(r) equals:

Find 'n' if ""^(n)C_(7)= ""^(n)C_(6) ?

If ""^(n)C_(3) + ""^(n)C_4 gt ""^(n+1) C_3 , then.

Prove that the Binomial theorem (a + b)^(n) = ""^(n)C_(0)a^(n) + ""^(n)C_(1)a^(n - 1)b + ""^(n)C_(2)a^(n - 2)b^(2) + .. ""^(n)C_(n)b^(n) for any positive integer 'n'.

Prove that (x+b)^(n)=""^(n)C_(0) x^(n)+""^(n)C_(1) x^(n-1)b+ ""^(n)C_(2) x^(n-2) b^(2)+...+ ....+..... ""^(n)C_(n) b^(n), and n in N and hence find (101)^(4) .

Determine n if ""^(2n)C_(3):""^(n)C_(3)=11:1