Home
Class 12
MATHS
Prove that .^(n-1)C(3)+.^(n-1)C(4) gt .^...

Prove that `.^(n-1)C_(3)+.^(n-1)C_(4) gt .^(n)C_(3)` if `n gt 7`.

Text Solution

Verified by Experts

We have, `.^(n-1)C_(3)+.^(n-1)C_(4) gt .^(n)C_(3) " "[because.^(n)C_(r)+.^(n)C_(r-1)=.^(n+1)C_(r)]`
`hArr .^(n)C_(4)gt.^(n)C_(3)`
`hArr (n!)/(4!(n-4)!)gt(n!)/(3!(n-3)!)`
`hArr (1)/(4(n-4)!)gt(1)/((n-3)(n-4)!)" "[becausem!=m(m-1)!]`
`hArr n-3 gt 4 hArr n gt7`
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that ""^(n)C_(r)+""^(n)C_(r-1)=""^(n+1)C_(r) .

If .^(n)C_(9)=.^(n)C_(7) , find n.

If ""^(n)C_(3) + ""^(n)C_4 gt ""^(n+1) C_3 , then.

Find n if .^(n)C_(9)=.^(n)C_(5) .

If ""^(n)C_(8) = ""^(n)C_(2) Find ""^(n)C_(2) ?

Prove that 1^(2) +2^(2)+ ….+n^(2) gt (n^(3))/(3) , n in N

Find the value of n such that (""^(n)P_(4))/(""^(n-1)P_(4))=(5)/(3), n gt 4

The mean of the values of 0, 1, 2, …., n, having corresponding weight .^(n)C_(0), .^(n)C_(1), .^(n)C_(2), ....., .^(n)C_(n) respectively is :