Home
Class 12
MATHS
1*2*3+2*3*4+...+n(n+1)(n+2)=(n(n+1)(n+2)...

`1*2*3+2*3*4+...+n(n+1)(n+2)=(n(n+1)(n+2)(n+3))/4 forall n in N.`

Text Solution

Verified by Experts

Let `P(n):1.2.3+2.3.4+.....+n(n+1)(n+2)=(n(n+1)(n+2)(n+3))/(4)` ........(i)
Step I For `n =1, LHS of Eq. (i) `=1.2.3=6`and RHS of Eq. (i) `=(1.(1+1(1+2)(1+3))/(4)=6`
`therefore` LHS = RHS
Therefore , P(1) is true , then
Step II Assume that P(k) is true , then
`P(k):1.2.3+2.3.4+.....+k(k+1)(k+2)=(k(k+1)(k+2)(k+3))/(4)`
Step III For `n=k+1`
`P(k+1):1.2.3+2.3.4+.....+k(k+1)(k+2)+(k+1)(k+2)(k+3)`
`=((k+1)(k+2)(k+3)(k+4))/(4)`
`therefore LHS = 1.2.3+2.3.4+...+k(k+1)(k+2)+(k+1)(k+2)(k+3)`
=(k(k+1)(k+2)(k+3))/(4)+(k+1)(k+2)(k+3)` [by assumption step]
`=((k+1)(k+2)(k+3))/(4)(k+4)`
`=((k+1)(k+2)(k+3)(k+4))/(4)=RHS`
Therefore , `P(k+1)` is true . Hence , by the principle of mathematical induction P(n) is true for all `n epsi N`.
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that by using the principle of mathematical induction for all n in N : 1.2.3+ 2.3.4+ ....+ n(n+1)(n+2)=(n(n+1)(n+2)(n+3))/(4)

1.2+2.3+3.4+…………..+n(n+1)=n/3(n+1)(n+2) forall n in N.

1^(2)+2^(2)+3^(2)+............+n^(2)=(n(n+1)(2n+1))/6 forall n in N.

1^(3)+2^(3)+3^(3)+………….+n^(3)=(n^(2)(n+1)^(2))/4 forall n in N.

1+2+3+............+n=(n(n+1))/2 forall n in N.

a+ar+ar^(2)+...+ar^(n-1)=(a(1-r^(n)))/(1-r) forall n in N.

1/1.4+1/4.7+1/7.10+...+1/((3n-2)(3n+1))=n/((3n+1)) forall n in N.

1/(2*5)+1/(5*8)+1/(8*11)+............1/((3n-1)(3n+2))=n/((6n+4)) forall n in N.

(1+3/1)(1+5/4)(1+7/9)...(1+((2n+1))/n^(2))=(n+1)^(2) forall n in N.

1/1.2+1/2.3+1/3.4+…………….+1/(n(n+1))=n/(n+1) forall n in N.