Home
Class 12
MATHS
1*2*3+2*3*4+...+n(n+1)(n+2)=(n(n+1)(n+2)...

`1*2*3+2*3*4+...+n(n+1)(n+2)=(n(n+1)(n+2)(n+3))/4 forall n in N.`

Text Solution

Verified by Experts

Let `P(n):(1)/(1.2.3)+(1)/(2.3.4)+.....+(1)/(n(n+1)(n+2))=(n(n+3))/(4(n+1)(n+2))` .....(i)
Step I For n=1.
LHS is Eq. (i) `=(1)/(1.2.3)=(1)/(6)` and RHS of Eq. (i) `=(1(1+3))/(4(1+1)(1+2))=(1)/(6)`
Therefore , P(1) is true .
Step II Assume that P(k) is ture , then `P(k):(1)/(1.2.3)+(1)/(2.3.4)+......+(1)/(k(k+1)(k+2))=(k(k+3))/(4(k+1)(k+2))`
Step III For `n=k+1`,
``P(k):(1)/(1.2.3)+(1)/(2.3.4)+.....+(1)/(k(k+1)(k+2))+(1)/((k+1)(k+2(k+3)))=((k+1)(k+4))/(4(k+2)(k+3))`
`therefore LHS =(1)/(1.2.3)+(1)/(2.3.4)+.....+(1)/(k(k+1)(k+2))+(1)/((k+1)(k+2)(k+3))`
` =(k(k+3))/(4(k+1)(k+2))+(1)/((k+1)(k+2)(k+3))` [by assumption step ]
`=(k(k+3)^2+4)/(4(k+1)(k+2)(k+3))`
`=(k^3+6k^2+9k+4)/(4(k+1)(k+2)(k+3))`
`=((k+10^2(k+4))/(4(k+1)(k+2)(k+3))`
`=((k+1)(k+4))/(4(k+2)(k+3))=RHS`
Therefore , `P(k+1)` is true , Hence , by the principle of mathematical P(n) is true for all `n in N`.
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that by using the principle of mathematical induction for all n in N : 1.2.3+ 2.3.4+ ....+ n(n+1)(n+2)=(n(n+1)(n+2)(n+3))/(4)

1.2+2.3+3.4+…………..+n(n+1)=n/3(n+1)(n+2) forall n in N.

1^(2)+2^(2)+3^(2)+............+n^(2)=(n(n+1)(2n+1))/6 forall n in N.

1^(3)+2^(3)+3^(3)+………….+n^(3)=(n^(2)(n+1)^(2))/4 forall n in N.

1+2+3+............+n=(n(n+1))/2 forall n in N.

a+ar+ar^(2)+...+ar^(n-1)=(a(1-r^(n)))/(1-r) forall n in N.

1/1.4+1/4.7+1/7.10+...+1/((3n-2)(3n+1))=n/((3n+1)) forall n in N.

1/(2*5)+1/(5*8)+1/(8*11)+............1/((3n-1)(3n+2))=n/((6n+4)) forall n in N.

(1+3/1)(1+5/4)(1+7/9)...(1+((2n+1))/n^(2))=(n+1)^(2) forall n in N.

1/1.2+1/2.3+1/3.4+…………….+1/(n(n+1))=n/(n+1) forall n in N.